
 

 

 

 

 

On the Treatment of Heteroscedasticity in Area‐Yield/Group‐Risk 
Crop Insurance 

 

 

Alan Ker 

Aker@uoguelph.ca 

Chair, department of Food, Agricultural and Resource Economics (FARE) 

University of Guelph, 

Guelph, Ontario, ON,  N1G 2W1 

 

Tor Tolhurst 

ttolhurs@uoguelph.ca 

Graduate research assistant, FARE, University of Guelph 

Guelph, Ontario, ON,  N1G2W1  

 

 

 

 

 

 

Cahier de recherche/Working paper #2013‐05 



On the Treatment of Heteroscedasticity in  
Area‐Yield/Group‐Risk Crop Insurance 

 

Résumé:  Les  rendements  des  cultures  varient  dans  le  temps  et  l’espace.    Les  programmes 

d’assurance récolte au Canada comme aux États‐Unis dépendent de données historiques pour 

déterminer  les  primes.    La  modélisation  des  rendements  joue  un  rôle  crucial  dans  la 

spécification des  contrats d’assurance.   Nous exploitons des développements  récents portant 

sur  l’instabilité  de  la  variance  des  rendements  sur  l’évaluation  de  probabilités  de  différents 

niveaux de rendements possibles.  Nous utilisons des données sur les rendements de maïs et de 

soya pour des comtés de l’Illinois, l’Indiana et l’Iowa couvrant 56 années.  Nous démontrons que 

l’estimation de coefficients d’hétéroscédasticité par secteurs stabilise la procédure d’estimation 

des rendements. Cette stabilité permet des économies significatives dans  la détermination des 

primes  d’assurance.  Ces  résultats  sont  particulièrement  pertinents  pour  les  programmes 

d’assurance  récolte  américains  axés  sur  les  rendements  locaux  et  les  risques  collectifs, mais 

aussi pour  les programmes  canadiens.   Nos  résultats montrent aussi  l’importance d’avoir des 

données de qualité au niveau des comtés.       

 

Abstract: Crop yields vary a lot across time and space.  Crop insurance programs in Canada and 

in the United States typically rely on historical yield data to determine premia.  The econometric 

modeling of  yields  is of  the utmost  importance  in  the pricing of  insurance  contracts.    In  this 

manuscript we build upon recent contributions on how to account for the unstable nature of the 

variance of yields in predicting potential yield outcomes. With 56 years of county‐level corn and 

soybean  yield  data  for  Illinois,  Indiana  and  Iowa, we  find  that  estimating  heteroscedasticity 

coefficients using data pooled within a Crop‐Reporting District greatly  improves the stability of 

the  estimation  procedure. We  demonstrate  that  this  increased  stability  is  non‐trivial  in  that 

economically  and  statistically  significant  improvements  in  crop  insurance  rates  are  realized. 

These findings are particularly relevant for the U.S. area‐yield or group‐risk programs, but also 

for Canadian crop  insurance programs.   Our results highlight the  importance of having reliable 

yield data at the county level.   
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1. Introduction

Heteroscedasticity has relatively trivial consequences for coefficient estimates in a linear re-

gression context: estimates remain unbiased and standard errors are easily remedied by

procedures such as White’s heteroscedasticity-corrected standard errors. In contrast, het-

eroscedasticity -- by definition a non-constant error variance within the sample -- has serious

consequences for estimating conditional yield densities, f̂(Y |t), and thus for crop insurance

rates derived (implicitly or explicitly) from those estimated densities. In fact, improper treat-

ment of heteroscedasticity will result in biased density estimates and thus biased premium

rates. As we later illustrate, these biases can be non-trivial: premium rates can double

or triple depending on different heteroscedasticity treatments. We consider heteroscedas-

ticity treatments in the context of premium determination for Risk Management Agency’s

group-risk insurance programs which use county-level yield data to estimate rates. In 2012,

group-risk insurance products in the United States accounted for a total of $3.7 billion in

liabilities and collected $256 million in premiums.1

Modeling crop yield distributions have received significantly more attention than het-

eroscedasticity treatments in the agricultural economics literature despite the latter tending

to have as much or greater impact on crop insurance rates. Recently Ke and Qiao (2012)

examined the effects of yield distributions on crop insurance pricing in China, while Du,

Hennessy and Yu (2012) examined the presence, determinants and economic consequences

of skewness in yield distributions. Heteroscedasticity is also an important consideration when

estimating yield distributions for non-crop insurance settings. For example, Cabas, Weersink

and Olale (2010) and Tack, Harri and Coble (2012) both made use of estimated yield distri-

butions to anticipate the effects of climatic change on agricultural production, while Lobell,

Cassman, and Field (2009) estimated yield distributions in the context of food security. The

treatment of heteroscedasticity is highly influential in both determining an appropriate crop

1Including the Group Risk Plan (GRP), Group Risk Income Protection (GRIP) and Group Risk Income
Protection - Harvest Revenue Option (GRIP-HRO).
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yield distribution and its resulting parameter estimates. Just and Weninger (1999) demon-

strated that improperly assuming homoscedasticity may lead to incorrect conclusions about

the best fitting distributional form.

Figure 1 illustrates the economic implications of heteroscedasticity on county-level crop

insurance rates derived from estimated conditional yield densities under two common het-

eroscedasticity treatments: one adjusted for heteroscedasticity assuming constant coefficient

of variation (the dashed line) and one assuming homoscedasticity (the solid line). In this

case, the raw residuals fail to reject homoscedasticity but so too do the standardized resid-

uals after accounting for a constant coefficient of variation. That is, both the adjusted and

unadjusted residuals fail to reject homoscedasticity and as such it is difficult to choose one

rate in favor of the other. Furthermore, the differences in the estimated premium rates are

large: at the 75% coverage level, the adjusted rate of 2.19% is 7.2 times larger than the

unadjusted rate of 0.30%. At the 90% coverage level, the difference between rates is propor-

tionally smaller but remains substantial nevertheless: an adjusted rate of 3.80% versus an

unadjusted rate of 1.16%. Clearly, the differences across the adjusted and unadjusted rates

are economically significant. Furthermore, this ambiguous situation is prevalent in our data:

26.6% of the county-crop combinations fail to reject homoscedasticity in both the adjusted

and unadjusted residuals.2

Harri et al. (2011) highlight the fact that researchers have been limited by the use of

relatively strict heteroscedasticity treatments. They note: “Our results demonstrate that no

single heteroscedasticity assumption is appropriate in every case. Being correct on average

or even in a majority of cases may still lead to significant problems in the design, rating,

and performance of crop insurance contracts” (p. 708). In response, Harri et al. (2011)

developed an empirical approach that both relaxed heteroscedasticity assumptions and lead

to statistically significant economic improvements in the actuarial soundness of premium

rates.

2When variance is assumed to be linearly proportional to the fitted values (as opposed to constant coefficient
of variation) 56.7% of the county-crop combinations fail to reject homoscedasticity in both the adjusted and
unadjusted residuals.

2



1960 1970 1980 1990 2000 2010

80
10

0
12

0
14

0
16

0
18

0
20

0

Year

Y
ie

ld
 (

B
us

he
ls

 p
er

 A
cr

e)

100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

Yield (Bushels per Acre)

D
en

si
ty

Unadjusted

Constant CV Adjusted

75% Cov

90% Cov

unadj = 0.3%

adj = 2.19%

unadj = 1.16%

adj = 3.81%

Figure 1. Top: historical corn yields in Bureau County, Illinois 1955-2011
with linear trend. Bottom: nonparametric estimates of Bureau County corn
yield densities and estimated premium rates using different heteroscedasticity
treatments.

3



Harri et al. (2011) estimate a heteroscedasticity coefficient, β, using σ2
êt

= σ2 · ŷβt . They

constrain β ∈ [0, 2] given β = 0 implies homoscedasticity and β = 2 implies constant

coefficient of variation. Somewhat troubling is that we found this constraint to be binding

in 57% of the cases in our data. As a result, we propose an alternative approach to Harri et

al. (2011) that does not require a priori constraints on β. We estimate an unconstrained β

by pooling observations across counties in a given crop reporting district and estimate one

β. Although this restricts the heteroscedasticity coefficients to be equivalent across counties

within a district for a given crop, empirically we can not reject this restriction. In addition,

pooling leads to economically and statistically significant improvements in crop insurance

rates compared to either the bounded or unbounded method of Harri et al. (2011).

This manuscript proceeds as follows. In the next section, we review common heteroscedas-

ticity treatments in the crop yield distribution literature, the empirical method of Harri et

al. (2011), and the data used for the analysis. In the third and fourth sections we present

our empirical results and demonstrate the economic and statistical signficance of pooling

using an out-of-sample simulation. The final section offers some concluding remarks.

2. Empirical Treatment of Heteroscedasticity

The treatment of possible heteroscedasticity in the crop insurance literature generally in-

volves testing for homoscedasticity and if the yield data fails to reject they are assumed

homoscedastic.3 Conversely, if the yield data rejects homoscedasticity the variance is gen-

erally assumed to be proportional to the fitted values.4 Harri et al. (2011) offer a third

approach as a flexible alternative by estimating the degree of heteroscedasticity. They find

significant improvements in program loss ratios could be realized with their approach.

Their approach proceeds as follows. Assume a function g(t) exists representing the tech-

nological change of yields through time and assume that variance is a function of the fitted

3Examples include Nelson (1990); Coble, Heifner and Zuniga (2000); Woodard and Sherrick (2011).
4Examples: Gallagher (1987), Goodwin and Ker (1998); Just and Weninger (1999).
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values ŷ. Then the variance term can be specified as follows:

(1) σ2
êt = σ2 · ŷtβ

where β is the heteroscedasticity coefficient to be estimated and ê are the estimated residuals

from regressing y on g(t). The heteroscedasticity coefficient can be estimated from the

logarithm of Equation 1:

(2) ln ê2t = α + β ln ŷt + εt

where α is an intercept-term and εt is a well-behaved error-term. Interpreting the het-

eroscedasticity coefficient is straightforward: when β = 0 the variance is homoscedastic as

σ2
êt
= σ2; when β = 1 the variance is increasing at a constant rate; and when β = 2 the vari-

ance follows a constant coefficient of variation σ2
êt
= σ2 · ŷ2. Then, given β̂ and a forecast5 at

time T +2 denoted ŷT+2, a set of yields, ỹ1...ỹt, from the conditional yield density of interest

is derived as follows:

(3) ỹt = ŷT+2 + êt ·
ŷβ̂T+2

ŷβ̂t

These adjusted yields are used to estimate county-level premium rates.

Surprisingly, when this approach is applied to county-level yield data the β̂’s are fre-

quently outside the range [0,2] and often by a significant magnitude. Figure 2 illustrates the

unconstrained county-level heteroscedasticity coefficient estimates for corn and soybeans in

Illinois, Indiana, and Iowa.6 Although the frequency of violations is readily apparent (and

summarized in Table 1), the magnitude of these violations is somewhat troubling. Indeed

5Forecast at time T + 2 following Harri et al. (2011). Insurance companies only have access to yield
information up to year n− 2 to set their rate for year n.
6County-level data for the period 1955-2011 from the National Agricultural Statistics Service were used. Any
counties with incomplete yield histories are excluded: five counties from both Illinois corn and soybeans; 13
counties from Indiana corn; 10 counties from Indiana soybeans; and one county from Iowa soybeans. This
resulted in 552 crop-county combinations and represents a large portion of the area-yield programs.
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Table 1. Frequency of heteroscedasticity coefficient estimates outside [0,2]

Illinois Indiana Iowa

Corn Soybean Corn Soybean Corn Soybean Total

β̂ ∈ (2,∞) 57% 56% 34% 57% 33% 54% 49%
β̂ ∈ (−∞, 0) 0% 8% 5% 5% 12% 14% 8%

Total 57% 64% 39% 62% 45% 68% 57%

Harri et al. (2011) imposed the constraint, β ∈ [0, 2], to handle this instability.7 We propose

an alternative approach to constraining: we pool êt and ŷt across counties within a crop-

reporting district to estimate one heteroscedasticity coefficient per district. This has the

benefit of additional, albeit correlated, observations but will nonetheless reduce the variance

of the estimated coefficient. Additionally, pooling allows for coefficient estimates outside the

[0,2] range if warranted by the data. This approach assumes the underlying heterscedasticity

structure is the same across counties in a crop-reporting district for a given crop. As such

we both test this restriction and evaluate the effects of pooling for rating crop insurance

contracts using an out-of-sample simulation.

3. An Alternative Approach

Harri et al. (2011) impose the restriction β ∈ [0, 2] as a response to what is a high degree of

instability in the heteroscedasticity estimates. While this certainly restricts β̂ into an a priori

plausible region it results in significant bunching at the endpoints of the constraint -- 57%

of estimates in our county-crop combinations would be constrained. As an alternative we

propose pooling the fitted yields and corresponding residuals of each crop-county combination

to their respective crop-reporting district and estimate one heteroscedasticity coefficient;

that is, we assume the heteroscedasticity coefficient is constant for counties within a crop-

reporting district for a given crop. To this end we estimate Equation 1 using all the fitted

yields and residuals for each county for a given crop pooled to the crop-reporting district.
7Rather than using least squares in the estimation of the heteroscedasticity coefficient, we used a variety of ro-
bust regression techniques (conditional quantile regression, trimmed least squares, and Huber M-estimation)
in an attempt to stabilize β̂. However, these techniques did not offer any tangible improvement.
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A closer look at estimating the heteroscedasticity coefficient with yield data is revealing.

Consider the Northern crop-reporting district of Iowa soybeans where the β constraint is

violated in 68% of the counties. Figure 3 illustrates the heteroscedasticity regression for this

district and one of its counties, Cerro Gordo county. The slopes of the lines in Figure 3

appear to fit the data equally well; one assumes homoscedasticity, another assumes constant

coefficient of variation, while the third is the unconstrained estimate (β̂ = 3.94 which is sig-

nificantly outside [0, 2]). The bottom panel illustrates the district-pooled heteroscedasticity

procedure (with the estimated β̃ = 2.50). As expected, when more observations are added

the estimated heteroscedasticity coefficient has a substantially smaller variance. What is

troubling is the magnitude of the differences in the premium rates resulting from the dif-

ferent heteroscedasticity estimates. The estimated premium rates at the 75% coverage level

based on β = {0, 2, 2.5, 3.9} are 0.09%, 0.58%, 1.36% and 2.91% respectively. At the 90%

coverage level the rates are 0.34%, 1.15%, 1.99% and 3.54% respectively. Note that only

β = 0 is rejected by the data at the 5% significance level.

A complete picture of the heteroscedasticity coefficient estimation with the pooled proce-

dure is summarized in Figure 4. It is clear the heteroscedasticity coefficient estimate range

narrows closer to the expected [0,2] range. In the case of the pooled estimates, the mini-

mum and maximum values become more economically reasonable than in the unconstrained

procedure: for the pooled β̂ a minimum of -0.85 and maximum of 3.30 versus a minimum of

-2.49 and maximum of 6.96 for the unconstrained county-level β̂. Further, the estimates are

allowed to fall out of the [0,2] range. This is important because there is no empirical evidence

to suggest that the unknown but true heteroscedasticity coefficient may be outside of this

[0,2] range for particular crop-county combinations. Although both pooling and constraining

reduce the dispersion of heteroscedasticity coefficient estimates to more reasonable values,

an outright constraint of β ∈ [0, 2] may be overly restrictive. Indeed, the fact that in our

sample the constraint was required in over 57% of the cases does suggest that the [0,2] range

may be too restrictive. By estimating the heteroscedasticity coefficient using pooled data

there is no need to determine appropriate values for restricting β estimates.
9
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Table 2. Summary of heteroscedasticity coefficient estimate t- and F -tests.

% of Counties Failing to Reject at the 5% Significance Level

t-tests F -test

State Ho : β̂i = 0 Ho : β̂i = 2 Both Ho : D̂1 = · · · = D̂i = 0

Corn
Illinois 38.1% 90.7% 33.0% 100.0%
Indiana 63.3% 88.6% 55.7% 100.0%
Iowa 63.6% 88.9% 52.5% 100.0%

Soybean
Illinois 68.0% 91.8% 63.9% 100.0%
Indiana 54.9% 92.7% 53.7% 100.0%
Iowa 56.1% 84.7% 48.0% 100.0%

Table 2 presents the results of testing the heteroscedasticity coefficient from Equation

2, β̂, for homoscedasticity (β̂ = 0) and a constant coefficient of variation (β̂ = 2) using

a t-test with robust standard errors. Consistent with the direct heteroscedasticity tests,

we fail to reject a constant coefficient of variation in a large majority of the county-crop

combinations, fail to reject homoscedasticity in more than half the combinations, and fail

to reject both in roughly half the combinations (assuming a 5% level of significance for all

tests). We also perform a joint F-test in the crop-reporting district equation to test whether

the heteroscedasticity coefficients are equivalent across the counties, using dummy variables

to represent the different counties. We fail to reject the null that the heteroscedasticity

coefficients are equal in almost all cases. Although this result is conssitent with pooling, it

is not really surprising or informative given the low power of the test resulting from the high

variance of the estimated coefficients. As such, we conduct a simulated game to consider the

economic implications of using the pooling approach versus the restrictions.

4. Economic Implications

In this section we compare the pooled heteroscedasticity estimates with both the unpooled

and restricted county-level estimates in an out-of-sample simulation of rating insurance con-

tracts. This approach has been used extensively in the literature (see Ker and McGowan
11



2000; Ker and Coble 2003; Racine and Ker 2006; and Harri et al. 2011) to compare alter-

native rating methodologies. The simulation involves two agents: (1) the Risk Management

Agency (RMA) which uses the base case insurance valuation technique, and (2) a private

insurance company, which uses the proposed technique. In this case, the government in-

surance company uses the heteroscedasticity coefficient estimation technique of Harri et al.

(2011), including the [0,2] bounds on heteroscedasticity coefficient estimates. The private

insurance company uses the proposed pooled approach. Both agents use identical detrend-

ing procedures so that differences in the performance are exclusively due to differences in

heteroscedasticity treatments.

The design of the simulation imitates the decision rules of the Standard Reinsurance

Agreement. Under the Standard Reinsurance Agreement, private insurance companies may

effectively retain or cede insurance contracts of their choice ex ante.8 Let π̂ptk be the estimated

premium rate of the private insurance company for county k in year t based on yield data

from 1955 to t − 2 . Also let π̂gtk be RMAs estimated premium rate for county k in year t

again based on yield data from 1955 to t − 2. The private insurance company will retain

policies it expects to be profitable; that is, policies with rates lower than the government

rates (π̂ptk < π̂gtk). Loss ratios are calculated for the set of retained policies and the set of

ceded policies using actual yield realizations. The simulation is performed on a by crop and

state basis and counties are weighted by acreage. Consistent with the literature (Ker and

McGowan 2000; Ker and Coble 2003; Racine and Ker 2006; and Harri et al. 2011) we use

15 years for the out-of-sample component and p-values are calculated using randomization

methods (1000 randomizations).

Table 3 reports the results of the out-of-sample simulation for all state-crop combinations

at the 75% and 90% coverage levels. Both the constrained and unconstrained government

heteroscedasticity processes are reported in the table. In most cases the loss ratios are quite

low but correspond to actual loss ratios for the program over this period.

8The SRA contains multiple funds and is more complicated but essentially a private insurance company can
significantly reduce their exposure to unwanted policies.
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Table 3. Out-of-sample simulation results for the 75% and 90% coverage levels.

Private % Psuedo Loss Ratio Underpayment Overcharge

Crop State of policies Private Government p-value to program to farmers

Government β ∈ [0, 2], 75% Coverage Level
Corn IA 26.0% 0.000 0.043 0.000 -1,283,504 1,251,888

IL 27.8% 0.040 0.049 0.033 -18,396,166 2,071,608
IN 15.8% 0.070 0.145 0.053 -3,154,020 1,187,909

Soybean IA 21.6% 1.068 0.429 1.000 -1,110,723 3,288
IL 36.9% 0.178 0.578 0.001 -1,213,266 349,334
IN 18.5% 0.072 0.245 0.007 2,775,644 150,125

Government β ∈ [0, 2], 90% Coverage Level
Corn IA 26.0% 0.032 0.114 0.000 -2,085,988 1,847,554

IL 27.8% 0.206 0.227 0.025 -25,276,303 3,201,127
IN 15.8% 0.250 0.330 0.013 -5,573,420 1,816,622

Soybean IA 24.0% 1.237 0.489 1.000 -1,603,765 11,279
IL 37.5% 0.434 0.685 0.007 -4,741,512 284,890
IN 18.8% 0.486 0.609 0.026 -2,156,519 769,971

Government β ∈ (−∞,∞), 75% Coverage Level
Corn IA 55.2% 0.005 0.027 0.000 -1,099,013 8,559,892

IL 58.1% 0.009 0.030 0.000 -8,468,842 17,272,550
IN 48.9% 0.020 0.103 0.000 -2,045,060 7,538,648

Soybean IA 59.1% 0.071 0.475 0.062 -392,103 2,588,397
IL 65.2% 0.053 0.739 0.000 -420,548 5,741,677
IN 54.5% 0.018 0.281 0.000 -1,977,644 9,473,880

Government β ∈ (−∞,∞), 90% Coverage Level
Corn IA 55.2% 0.021 0.107 0.000 -1,877,533 10,255,324

IL 58.1% 0.063 0.221 0.000 -13,531,817 19,958,888
IN 48.9% 0.098 0.285 0.000 -4,112,465 9,222,908

Soybean IA 60.3% 0.163 0.823 0.000 -555,301 2,971,117
IL 65.5% 0.173 0.825 0.000 -985,400 7,440,351
IN 54.7% 0.134 0.792 0.000 -3,521,869 11,242,732

Note: All counties weighted by share of total acreage. Underpayment and overcharge are in dollars.

For the pooled estimation procedure versus the Harri et al. (2011) procedure with β ∈

[0, 2], the pooled estimation procedure tends to perform better: in ten of the twelve cases

loss ratios are lower and statistically significant with the exception of Iowa soybean at both
13



coverage levels. With respect to Iowa soybean the heteroscedasticity coefficient estimates are

highly volatile both across the counties and within a county over the simulation period. As a

result, even the pooled estimate is somewhat volatile. Comparing the pooled approach to the

unconstrained methodology, pooling outperforms all state-crop combinations and the private

insurance company retains a far greater proportion of the contracts compared to the bounded

scenario. This is not surprising since leaving the heteroscedasticity coefficient estimates

unbounded at the county-level results in wildly-fluctuating premium rates. Summarizing,

in twenty-two of the twenty-four cases the pooled approach outperforms the non-pooled

approaches.

To give an idea of the scope of rate differences, the two columns on the right hand side

of Table 3 sum the dollar difference in premiums generated by different heteroscedasticity

treatments.9 These calculations assume the private insurance company’s premium rates are

correct such that if πp > πg the difference between the rates is the underpayment to the

program and if πp < πg is the overcharge to farmers for one year (2011). The underpayment

and overcharge are only for one year of the program—in perpetuity, these values repre-

sent significant transfers of wealth between insurers and policyholders. Notably for corn,

all of the underpayment and overcharge values exceed $1 million. The underpayment and

overcharge values for soybeans are smaller but nevertheless roughly half exceed $1 million.

Not surprisingly, the differences between the private and government insurance rates are

largest at higher coverage levels and when the government heteroscedasticity coefficient is

left unbounded. To put these values into perspective, for the bounded scenario at the 75%

(90%) coverage level, the underpayment and overcharge represent 61.5% (44.8%), 56.1%

(37.5%), and 55.7% (38.6%) of the estimated total premiums for 2011 in Illinois, Indiana

and Iowa respectively. Similarly for soybean, the underpayment and overcharge represent

53.0% (35.7%), 64.1% (39.9%) and 62.8% (44.4%) of total estimated 2011 premiums. In

the unbounded scenario the proportion of underpayment and overcharge are even higher,

9Premiums for a given country are calculated as the product of the county’s estimated premium rate (bu./ac.),
the RMA projected price ($/bu.) and insured acreage (ac.), all for 2011.
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often exceeding 100% of the total estimated premiums. The underpayment and overcharge

values demonstrate the economically significant differences in crop insurance premium rates

generated under different heteroscedasticity treatment scenarios.

5. Conclusions

This purpose of this manuscript was to recover heteroscedasticity estimates that aligned

with a priori expectations without imposing restrictive bounds. We estimated a single

heteroscedasticity coefficient per crop-reporting district combination rather than per county-

crop combination by pooling the data across counties within a district. Not only did the

pooling lead to more a priori plausable estimates, but our out-of-sample simulations found

that it offers economically and statistically signficant improvements in crop insurance rating

over Harri et al. (2011) in twenty-two of the twenty-four cases considered. This finding is

noteable as the Harri et al. (2011) approach is used for rating group-risk insurance contracts

(a program with liability in excess of $3.7 billion in 2012) as well as the proposed shallow

loss area programs proposed under the new farm bill.
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