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On Technological Change in Crop Yields 
 

Résumé: Les changements technologiques en agriculture affectent de  façon différente 
les  probabilités  de  diverses  catégories  de  rendements.  En  fait,  les  pires  rendements 
n’augmentent  pas  nécessairement  aussi  vite  que  les meilleurs  lorsque  de  nouvelles 
technologies  sont mises de  l’avant.   Nous modélisons  les  rendements par  le biais de 
mélanges  de  répartitions  qui  imbriquent  des  fonctions  de  tendance  pour  permettre 
d’avoir  différents  taux  de  croissance  pour  différentes  catégories  de  rendements.   De 
cette  façon,  nous  pouvons  tester  des  hypothèses  quant  aux  caractéristiques  des 
processus de génération de données pour les rendements des cultures qui n’ont jamais 
été  analysées  dans  le passé.        Par  exemple :  (1)  est‐ce  que  toutes  les  catégories  de 
rendements  ont  le même  taux  de  croissance  dans  le  temps?  Et  (2),  est‐ce  que  les 
probabilités pour chaque catégorie de rendements sont constantes dans le temps?  Nos 
résultats  démontrent  que  les  taux  de  croissance  de  différentes  catégories  de 
rendements  diffèrent  et  mais  que  les  probabilités  des  différentes  catégories  de 
rendements sont stables dans le temps.  Nous appliquons nos résultats à l’évaluation de 
contrats d’assurance récolte, mais nos résultats ont aussi des  implications  importantes 
pour  la  sécurité  alimentaire,  le  développement  économique,  les  marchés  des 
biocarburants et les politiques sur les changements climatiques.    

 

Abstract: Technological changes in agriculture typically do not affect probabilities of low 
yields in the same way they affects probabilities of high yields. Simply put, bad yields do 
not necessarily grow as  fast as good yields when new  technologies are  implemented.  
We  propose modeling  crop  yields  using mixtures with  embedded  trend  functions  to 
account  for  potentially  different  rates  of  technological  change  in  different  sub‐
populations  of  the  yield  distribution.  By  doing  so, we  can  test  some  interesting  and 
previously  untested  hypotheses  about  the  data  generating  process  of  yields.  For 
example: (1) is the rate of technological change equivalent across sub‐populations/yield 
categories?   and  (2) are  the probabilities of  sub‐populations  constant over  time? Our 
results ‐‐ technological change is not equivalent across subpopulations and probabilities 
have not changed significantly over time ‐‐ have implications for modeling yields. While 
we  consider  the  impacts  for  rating  crop  insurance  contracts,  accurate  modeling  of 
technological  change  is  relevant  to  issues  such  as  food  sustainability,  economic 
development, feeding a rapidly growing world population, biofuels markets and policy, 
and climate change. 
 

Keywords: yield distributions, technological changes, crop insurance 
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1. Introduction

Crop yields are agriculture’s principle unit of productivity measurement and, as a result of

numerous changes in technology, agriculture has experienced dramatic and widespread yield

increases over the past 75 years. These advances impact food sustainability, economic growth,

world hunger, energy markets, and our ability to mitigate or enhance potential climate change

effects. The rate of technological change has been exclusively measured at the mean implying

technological developments result in a location or location-scale shift of the yield distribution.

However, evidence in the crop science literature indicates technological developments alter

the mass associated with a segment or subpopulation of the yield distribution (e.g. Barry et

al. 2000; Dunwell 2000; Ellis et al. 2000; Badu-Apraku, Menkir and Lum 2007; De Bruin and

Pederson 2008; Gosala, Wania and Kang 2009; Edgerton et al. 2012). For example, triple-

stacked seeds were developed to increase resilience to a variety of pests as well as high winds

thereby reducing mass in the lower tail (Edgerton et al. 2012). In contrast, racehorse seeds

were developed to increase mass in the upper tail under relatively optimal growing conditions

(Lauer and Hicks 2005). These developments suggest that the rate of technological change

may vary across subpopulations and the probability of those subpopulations may change as

well.

We propose modeling crop yields using a mixture of normals to account for the different

subpopulations or components of the yield distribution. This is not new as others have

first estimated a trend and then using the residuals estimated a mixture of two normals

(e.g. Ker 1996; Goodwin, Roberts and Coble 2000; Woodard and Sherrick 2011). However,

the mixture model is more flexible than previously employed in that it can accommodate

different rates of technological change within different components and as such can be used

to model yields without limiting technological change to location or location-scale shifts of

the yield distribution.

To illustrate and provide some intuition for the proposed model we present in Figure 1
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Figure 1: County-level corn yields in Adams County, Illinois and estimated densities with
the proposed two-component trend.
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Figure 2: County-level corn yields in Adams County, Illinois and estimated densities following
the traditional estimation procedure.
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the estimate for corn yields from Adams County, Illinois assuming a mixture of two nor-

mals with linear trends.1 The rate of technological change in the upper component appears

greater than the rate of technological change in the lower component, which implies tech-

nological change is increasing yields in the upper component faster than yields in the lower

component. The bottom panel of Figure 1 illustrates the accompanying estimated yield

densities at four different time periods. The shape of the estimated yield densities changes

noticeably over time. In 1950 the estimated yield density appears relatively normal, while

in 1970 the estimated density displays negative skewness. As time increases and the effect

of differing rates of technological change become more prevalent, the estimated densities

become increasingly bimodal and the overall variance increases (giving rise to the presence

of heteroscedasticity). In contrast, Figure 2 illustrates the estimated trend and mixture

densities for the same yield series by first estimating a single trend and then estimating the

mixture from the heteroscedasticity-corrected residuals as commonly done in the literature.

The estimated densities are, somewhat surprisingly, quite different given both assume a nor-

mal mixture and use the same data. Indeed, the crop insurance premium rates derived from

these estimated densities are also markedly different: at the 75% and 90% coverage levels the

single trend model results in rates 5.43 and 1.89 times larger than the rates from the trend

mixture model respectively. These are non-trivial differences for USDA’s Risk Management

Agency’s (RMA) area-yield programs which carried $3.7 billion in liability in 2012 as well

as the proposed shallow loss programs that are likely to be part of the next farm bill.2

Using a mixture model with embedded trend functions in each mixture enables us to

test some interesting hypotheses about the data generating process of yields that have been

previously untestable. First, we test if the rate of technological change is equivalent across

subpopulations. Second, we test if the probabilities of the subpopulations are constant over

the sample period. Third, given the size of RMAs area-yield programs and the likelihood

1We discuss the number of mixtures and functional form issues in the empirical methods section.
2Both the area-yield programs and proposed shallow-loss program use county-level detrended

heteroscedasticity-corrected yield data to estimate premium rates. Adams county had over 18,000 acres
of corn insured under area-yield type insurance programs in 2012.
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of those growing with the potential introduction of shallow loss programs, we test if eco-

nomically and statistically significant rents can be recovered by adversely selecting against

premium rates derived from the one trend mixture model using premium rates derived from

the two trend mixture model. To do so, we use county level NASS data from Illinois, Indiana,

and Iowa for corn and soybeans and Kansas, Nebraska, and Texas data for wheat.

The manuscript proceeds as follows. The next section discusses modelling crop yields

with a brief survey of key contributions in the literature. Then we present the data, empiri-

cal model, and discuss our adjustments to the traditional Expectation-Maximization (EM)

algorithm. The final two sections present the results and concluding remarks.

2. Modeling Crop Yields

Most often the approach to estimating conditional yield densities is to: (i) estimate a trend

using the yield data; (ii) test the residuals from (i) for heteroscedasticity and adjust if

necessary; and (iii) estimate a parametric or nonparametric conditional yield density given

(i) and (ii). Relative to estimating technological change and issues of heteroscedasticity,

estimating yield densities has received far greater attention in the literature.

A wide variety of density estimation approaches have been proposed. In 1958, Botts and

Boles first suggested the use of “normal curve theory” to determine crop insurance premium

rates. Day (1965) argued crop yield densities displayed non-normal attributes such as signifi-

cant skewness. In response, Gallagher (1987) suggested the gamma distribution while Nelson

and Preckel (1989) suggested the beta distribution. Goodwin and Ker (1998) proposed non-

parametric kernel density methods while Just and Weninger (1999) argued deviations from

normality were the result of inconsistencies in methods and data. A semi-parametric ap-

proach was forwarded by Ker and Coble (2003). Later parameteric specifications included the

logistic (Atwood, Shaik and Watts 2003) and Weibull distributions (Sherrick et al. 2004).

Inverse sine transformation methods were used by Moss and Shonkwiler (1993), Ramirez

(1997), Ramirez, Misra and Field (2003), Ramirez and McDonald (2006). Normal mixtures
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have been used by Ker (1996), Goodwin, Roberts, and Coble (2000), and Woodard and

Sherrick (2011).

With the exception of Harri et al. (2011) and Just and Weninger (1999) heteroscedasticity

has received surprisingly little attention in the literature considering the magnitude of its

effect on crop insurance rates. Deterministic and stochastic approaches have been considered

in estimating technological change in yield data. Deterministic approaches have dominated

the literature and include a simple linear trend, two-knot linear spline (Skees and Reed

1986), and polynomial trend (Just and Weninger 1999). Stochastic approaches include the

Kalman filter (Kaylen and Koroma 1991) and ARIMA(p, d, q) (Goodwin and Ker 1998).

More recently, Ozaki and Silva (2009) and Claassen and Just (2011) incorporated spatial

information into their temporal model.

We propose modeling yields as a mixture of normals with embedded trend functions in

each mixture. That is:

yt ∼
J∑

j=1

λjN(hj(t), σ
2
j ) (1)

where the unknown parameters λj, σ
2
j and functions hj(t) are estimated with a maximum

likelihood approach using the heuristic EM algorithm for the j components of the mixture.

The proposed model offers advantages in all three aspects of modeling yields. First, the

normal mixture can approximate any continuous distribution and by default the distribu-

tional structures associated with yields. Second, embedding possibly unique trend functions

within each mixture does not restrict the effect of technological developments to a location

or location-scale shift of the yield distribution. Third, while the prevalence of heteroscedas-

ticity in yield data is often corrected for, its presence has not yet been well explained in

the crop science or agronomic literature. Note, that with the proposed model differing rates

of technological change can lead to heteroscedasticity even with homoscedastic component

variances.
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3. Data and Empirical Methods

As with many empirical applications using yield data there is a trade-off between length

of the time series and disaggregation keeping in mind what conditional yield distribution is

sought. Ideally we would use farm-level yield data -- particularly considering technological

adoption decisions are made at the producer level -- however the data is not sufficiently

long to estimate the mixture model with any economically relevant degree of statistical

significance. Therefore we use county-level National Agricultural Statistics Service (NASS)

yield data for our analyses. While this averages the farm-level yield data and thus mixes the

adopted technologies across farmers within a county, a county is a sufficiently small region

having relatively similar weather patterns such that the distributional structure of county

yields should not be markedly different than farm yields. A side benefit of using county level

yield data is that our results are particularly relevant for USDA’s area-yield crop insurance

programs and the shallow loss programs proposed in the new farm bill.

We estimate our proposed model using county-level corn, soybean, and wheat yields.

Corn and soybean data are from Illinois, Indiana and Iowa for the period 1955 to 2011.

These states are major producers of both corn and soybeans. In 2011 they accounted for

15.6%, 7.2% and 17.3% of national corn production and 13.7%, 7.8% and 15.4% of national

soybean production, respectively (NASS, 2013). For wheat we use Kansas, Nebraska and

Texas with a slightly shorter time series due to the limited availability of data; we use 1968

- 2011 for Texas and 1956 - 2011 for Kansas and Nebraska.3 These three states were also

major producers, accounting for 24.2%, 4.3% and 8.6% of national wheat production in 2011,

respectively. In total, we have 754 crop-combinations after excluding any county without a

full yield history.

We consider a mixture of two normals where the mean of each normal is replaced by a

3Data for Kansas are available for a longer period but were truncated at 1956 to align with the Nebraska
data.
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linear trend representing technological change. That is:

yt ∼ (1− λ)N(αl + βlt, σ
2
l ) + λN(αu + βut, σ

2
u) (2)

where the unknown parameters λ, αl, βl, σ
2
l , αu, βu, and σ2

u are estimated using maximum

likelihood but optimized with an EM algorithm. Mixture models are commonly estimated

using the EM algorithm because convergence issues arise with direct optimization of the

likelihood.4 We modified the traditional EM algorithm (Dempster, Laird and Rubin, 1977)

to embed the trend functions. This required replacing the weighted means estimate in the

traditional EM algorithm with a weighted least squares estimate where the diagonal of the

weighting matrix for the weighted least squares is the weighting vector and off diagonal

elements are zero.5

While more than two components could be used we assume two for the following reasons.

First and foremost, two components are sufficiently flexible to accommodate the variety of

distributional structures that are associated with yield data (namely symmetric, skewed,

long-tailed and bimodal) and estimated yield densities using a mixture of two normals are

nearly identical to estimates from nonparametric kernel methods. Second, most climatic

variables which are relevant to crop growth are spatially correlated within a county. As a re-

sult, producer yields tend to be correlated and central limit theorems do not apply. However,

if one conditioned yields on climate, the resulting conditional yield density would be nor-

mally distributed. Thus partitioning climate into two subpopulations -- poor weather years

and non-poor weather years -- would suggest a mixture of two normals for the unconditional

4Karlis and Xekalaki (2003), citing Bohning (1999) and McLachlan and Peel (2000), summarize the
advantages and disadvantages of the EM algorithm.

5The main limitation of the EM algorithm is that it may converge on local maxima, particularly when the
log-likelihood function is relatively flat or has multiple peaks. The problem of local maxima can be reduced
by choosing multiple starting values. Starting values may be either chosen for the parameters or for the
probability that a given realization belongs to a given component. We attempted three different approaches
and found identical results in almost all cases. First we assigned a given yield realization probability zero to
the lower component if it was greater than one standard deviation below the mean trend and one otherwise.
Second we assigned a given yield realization probability zero to the lower component if it was below the
mean trend and one otherwise. Third we choose starting values for the parameters λ, αl, βl, σ

2
l , αu, βu, and

σ2
u.
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(with respect to weather) yield distribution at the county level.

We estimated a variety of functional forms for hj(t) such as linear, quadratic, logarithmic,

and exponential. Most estimates exhibited a very linear structure (others overfit the data)

and thus we assumed a linear trend for the functional form of hj(t). One caveat of note, in

cases where there does not exist a very low yield in the first 5-10 years the linear trend for

the lower component crossed the linear trend in the upper component. Considering least

squares and linear specifications this is not surprising. In these cases we constrained the

intercept from the lower component to be equal to the upper component to prevent the

trend lines from crossing.

Estimation Results

Figure 3 presents the estimated temporal process for representative county-crop combina-

tions. Roughly 90% of the cases are similar to the presented cases: the rate of technological

change in both components is positive and is higher in the upper component. Interestingly,

despite the yields of these three crops being quite different, the estimated trends look similar

across crops and regions. The figures also illustrate how diverging component means create

heteroscedasticity: as technological change in the upper component outpaces the lower com-

ponent, dispersion increases (despite homoscedastic component variances). A more complete

picture of the relationship between β̂u and β̂l is provided in Figure 4 which maps β̂u against

β̂l for all county-crop combinations. The solid line represents equivalent rates of technolog-

ical change between the two subpopulations and corresponds to the assumption of using a

single trend. It is clear that the rate of technological change in the upper component has

generally outpaced the rate in the lower component by a considerable margin for all three

crops. Only a small number of cases have β̂u < β̂l and fall below the solid line: 5.3% of

corn, 8.7% of soybean and 24.8% of wheat counties. It is also readily apparent the rate of

technological change in corn -- regardless of upper or lower component -- has significantly
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Figure 3: Representative two-component technological trend estimates.
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outpaced soybean and wheat.6 For corn, β̂u is never below one and the majority of β̂l exceed

one. For soybean and wheat, β̂u never exceeds one.

Table 1 reports summary statistics of the slope ratios broken down by crop and region.

Also reported is the likelihood ratio test results from the hypothesis βl = βu. The results

clearly suggest that the rate of technological change varies across the two components: 84.0%

for corn, 82.3% for soybean and 64.0% for wheat reject the null hypothesis.7 These results

suggest that technological developments -- of adopted technologies -- have not resulted in a

simple location or location-scale shift in the yield distribution. This finding, consistent with

the crop science literature, calls to question the use of a single trend to model technological

change in yields.

Adoption of new technologies could alter the probabilities or mass of the mixture com-

ponents. Ideally technological change would result in more resilient crops and production

practices that would increase the mass in the upper component. Conversely, climate change

may increase or decrease the mass in the upper component depending on geographic location.

We test whether the probability of a draw from the upper component has changed over time

by regressing the probability of membership in the upper mixture -- γ̂t from the EM algo-

rithm -- against time. If the probability of the upper component was increasing through time

then the probability of a draw from the upper component would also be increasing through

time. Table 2 summarizes the results and Figure 5 illustrates the expected membership over

time corresponding to corn in Adams county, Illinois (Figure 1). Since the dispersion of

expected memberships increases over the sample period we use robust standard errors for

all of the t-tests. Only a small minority of county-crop combinations reject the null: 12.0%

for corn, 5.4% for soybean and 3.0% for wheat. These results indicate the probability of a

given component has not statistically changed over the sample period.8

6This is not surprising as significantly more research dollars have focused on corn productivity and the
ability of seed providers to retain property rights.

7Not surprisingly the rejection rates are higher for corn and soybean: hybrid seeds have been developed
for corn and soybeans but not wheat.

8This does not necessarily imply technological change or, say climate change, has had no effect -- it could
also imply the net effect has been zero.
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Table 1: Hypothesis Test One Results.

Summary Statistics for Ratio of β̂R/β̂P Ratio Rejection Rate

Crop n Minimum Mean Median Maximum Std. Dev. of β̂R = β̂P

Corn
Illinois 97 0.56 1.35 1.34 2.52 0.23 81.4%
Indiana 79 0.70 1.53 1.38 8.48 0.89 84.8%
Iowa 99 0.57 1.69 1.32 12.24 1.25 85.9%

Soybean
Illinois 97 -34.20 1.12 1.38 4.68 3.68 83.5%
Indiana 82 0.92 1.39 1.34 3.03 0.36 80.5%
Iowa 98 0.82 1.79 1.51 4.60 0.86 82.7%

Winter Wheat
Kansas 88 -478.79 -5.16 1.54 7.57 51.54 61.3%
Nebraska 42 -0.10 1.25 1.27 2.83 0.54 38.1%
Texas 72 -400.83 -2.84 1.32 86.83 48.71 57.0%

Note: Rejection rate is the per cent of counties rejecting the null hypothesis evaluated at the 5% significance

level. The extreme values (for example a maximum ratio of 86.83 for Texas wheat and a minimum ratio of

-478.79 for Kansas wheat) are extreme because β̂P → 0, which inflates the ratio. These values are extremely

high when they approach zero from the righthand side and extremely low when they approach zero from the

lefthand side. These values are apparent in Figure 4 near the vertical axis and there is nothing to indicate

they are problematic.
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Table 2: Hypothesis Test Two.

Number of Counties Rejecting Null

Crop-State Positive Negative Total

Corn
Illinois 0.0% 16.5% 16.5%
Indiana 0.0% 15.2% 15.2%
Iowa 0.0% 5.1% 5.1%

Soybean
Illinois 0.0% 4.1% 4.1%
Indiana 2.4% 2.4% 4.9%
Iowa 1.0% 6.1% 7.1%

Winter Wheat
Kansas 3.4% 5.7% 9.1%
Nebraska 0.0% 2.4% 2.4%
Texas 2.8% 0.0% 2.7%

Note: Statistical significance evaluated at the 5% significance level using least squares t-test with robust

standard errors.
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4. Implications for Crop Insurance

As noted above, one of the benefits of using county-level yield data is that our results are

particularly relevant for the area-yield programs such as GRP, GRIP, GRIPH which use

detrended heteroscedasticity corrected county-level yield data to estimate premium rates.

This program carried $3.2 billion in total liability in 2012. In addition, if the shallow loss

programs currently under the proposed farm bill become reality, detrended heteroscedasticity

corrected county-level yield data will be used to estimate these rates as well.

We compare the crop insurance rates estimated from the mixture model with differing

rates of technological change (denoted the two-trend model) to the mixture model with a

single rate of technological change (denoted the one-trend model). To compare rates, we use

an out-of-sample simulation using historical yield data to both estimate the models, derive

the premium rates, and calculate losses. The simulation involves two agents: (1) the Risk

Management Agency (RMA) which we assume derives rates from the one-trend model, and

(2) a private insurance company, which we assume derives rates from the two-trend model.

The simulated contract rating game has been commonly used in the literature to compare

two rating methods (Ker and McGowan 2000; Ker and Coble 2003; Racine and Ker 2006;

and Harri et al. 2011).

The simulation imitates the decision rules of the Standard Reinsurance Agreement, which

effectively allows private insurers to retain or cede contracts of their choice ex ante, that is,

averse select against the government.9 Premium rates are estimated out-of-sample based

on a two-step-ahead forecast of the expected yield. Let π̂p
tk be the estimated premium rate

of the private insurance company for county k in year t based on yield data from 1955 to

t − 2 . Also let π̂g
tk be RMAs estimated premium rate for county k in year t again based

on yield data from 1955 to t− 2. The private insurance company retains policies with rates

lower than the government rates (π̂p
tk < π̂g

tk) because ex ante it expects to earn a profit

9The SRA contains multiple funds and is more complicated but essentially a private insurance company
can significantly reduce their exposure to unwanted policies.
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on those policies. Loss ratios are calculated for the set of retained policies and the set of

ceded policies using actual yield realizations. If loss ratios for the set of retained policies is

statistically significantly lower than those of the ceded policies then we conclude that the

two-trend model leads to more accurate premium rate estimates than the one-trend model.

The simulation is performed on a by crop and state basis and p-values are calculated using

randomization methods (1000 randomizations) as in Ker and McGowan (2000), Ker and

Coble (2003), Racine and Ker (2006), and Harri et al. (2011).10 We ran the simulations for

20 years for all nine crop-state combinations.

Table 3 summarizes the results of the out-of-sample simulation for all state-crop combi-

nations at the 75% and 90% coverage level. Overall the private company loss ratio (using the

two-trend method) is lower in 77.8% of state-crop combinations across both coverage levels

lending good support to the two-trend versus one-trend model. Of these, seven state-crop

combinations are statistically significant at the 5% significance level and eight at the 10%

significance level. Interestingly, six of the seven statistically significant cases are for wheat

where claims are common and thus the power of the test is high. Conversely, the results

are not statistically significant for corn and soybean where claims are rare and the power of

the test is low. Notably, in all cases where the government loss ratio is lower the results are

not statistically significant. The two-trend model also appears to perform relatively better

at higher coverage levels where the percentage of claims is higher. Summarizing, the out-

of-sample simulation shows good (not strong) support for the two-trend versus one-trend

model.11

10p-values close to 0.00 represent statistical significance that the two-trend model is superior to the one-
trend model whereas p-values close to 1.00 represent statistical significance that the one-trend model is
superior to the two-trend model.

11 It is worth noting that this simulation compares the ability of the two models to estimate the lower
tail of the conditional yield density only and by default has relatively low power compared to the likelihood
ratio tests in the previous section which showed very convincing support for the two-trend versus one-trend
model.
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Table 3: Out-of-sample simulation results for corn, soybeans and wheat.

Coverage Retained by Psuedo Loss Ratio % of Policies

Set Level Private Private Government p-value to Payout

Corn

Illinois 75% 85.9% 0.092 0.026 0.787 3.0%
90% 87.8% 0.287 0.465 0.012 18.6%

Indiana 75% 81.1% 0.164 0.134 0.604 3.7%
90% 82.4% 0.395 0.434 0.373 19.8%

Iowa 75% 83.9% 0.357 0.409 0.361 6.6%
90% 86.8% 0.406 0.444 0.291 12.2%

Soybean

Illinois 75% 77.7% 0.366 0.374 0.431 3.0%
90% 67.4% 0.540 0.474 0.695 12.9%

Indiana 75% 86.9% 0.257 0.258 0.479 3.4%
90% 78.4% 0.611 0.746 0.201 19.6%

Iowa 75% 80.6% 0.809 0.467 0.757 6.1%
90% 78.7% 0.751 0.911 0.076 16.1%

Wheat

Kansas 75% 52.7% 1.414 2.396 0.001 21.6%
90% 48.6% 1.291 1.833 0.000 40.2%

Nebraska 75% 76.5% 0.771 2.470 0.001 11.2%
90% 70.2% 0.932 1.692 0.001 35.9%

Texas 75% 69.4% 1.166 2.356 0.000 23.2%
90% 64.2% 1.193 1.876 0.000 44.2%

Note: Out-of-sample simulation for 20 years with equally-weighted counties. Results are similiar at different

coverage levels, simulation lengths and with acreage-weighted counties and are available from the authors

upon request.
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5. Conclusions

We propose modeling yields as a function of normal mixtures with embedded trend functions

in each mixture. The normal mixture is beneficial in that it can accommodate the variety

of distributional structures associated with yield data. Embedding possibly unique trend

functions within each mixture does not restrict the effect of technological developments to a

location or location-scale shift of the yield distribution and thus is more consistent with the

agronomic and crop science literature. Using county level NASS data for corn, soybean, and

wheat, we found that the large majority of the county-crop combinations rejected the null of

identical trend functions and find that the rate of technological development is statistically

higher in upper versus lower components. This finding also provides a reasonable explanation

for the prevalence of heteroscedasticity in yield data. The two-trend versus one-trend model

is also supported by the out-of-sample rating simulation which suggested the two-trend

approach leads to more accurate premium rate estimates. This is of particular interest given

area-yield type insurance programs carried $3.7 billion in liability in 2012 and will likely

grow if shallow loss programs are introduced. A caveat worth noting is that higher rates of

technological change do not necessarily suggest that there have been greater developments

for upper versus lower components but rather that adopted technologies have lead to more

pronounced yield increases in upper versus lower components. Interestingly, this is consistent

with the incentives provided by subsidized crop insurance; an insured producer will more

readily adopt the technology that increases mass in the upper tail of the yield distribution

versus a competing technology that decreases mass in the lower tail.

The proposed model presents an opportunity to address a number of other important

questions in future research. For example, the proposed model is sufficiently flexible to con-

sider how climate change will effect different aspects of the yield data generating process.

Possible questions include: will climate change increase or decrease the probability of the

lower component; will climate change adversely effect the variance within the lower com-
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ponent; will climate change reduce the rate of technological change in the lower component

but not the upper component thereby increasing the variance of yields; and how do differ-

ent endowments and management strategies (especially soil quality and crop rotation) effect

technological change in the lower versus upper component? More generally, food sustain-

ability, economic growth, world hunger and population impacts, biofuels and accompanying

policies, and the impacts of potential climate change are very much dependent on our un-

derstanding and modelling of technological change in crop yields as well as the underlying

conditional yield distribution. The proposed mixture model with embedded trend functions

provides an alternative and we suggest more probable model of technological change in crop

yields.
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