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Abstract:  An input distance function (IDF) is estimated to empirically evaluate and 
analyze the technical and environmental efficiencies of 210 farms located in the 
Chaudière watershed (Quebec), where water quality problems are particularly acute 
because of the production of undesirable outputs that are jointly produced with 
agricultural products. The true IDF is approximated by a flexible translog functional form 
estimated using a full information maximum likelihood method. Technical and 
environmental efficiencies are disaggregated across farms and account for spatial 
variations. Our results show that there is a significant correlation between technical and 
environmental efficiencies. Farms that are technically efficient tend to be 
environmentally efficient. We used the cumulative Malmquist productivity index and the 
Fisher index to measure changes in technology, profitability, efficiency, and productivity 
in response to the adoption of 2 selected best management practices (BMPs) whose 
objective is to reduce water pollution. We found significant differences across BMPs 
regarding the direction and the magnitude of their effect on profitability, efficiency and 
productivity.   

 

Résumé: Une fonction de distance est estimée empiriquement pour évaluer les 
efficiences technique et environnementale de 210 fermes localisées dans le bassin 
Chaudière (Québec) où des problèmes avec la qualité de l’eau, découlant de la production 
d’outputs indésirables qui accompagnent les productions agricoles, ont été observés. 
Nous estimons une forme fonctionnelle Translog par la méthode de maximum de 
vraisemblance à information complète.  Les mesures d’efficience, qui sont calculées pour 
chaque ferme, prennent en compte les variations spatiales.  Nos résultats indiquent qu’il y 
a une corrélation positive entre les efficiences techniques et environnementales. Les 
fermes qui sont plus efficientes techniquement sont aussi plus efficientes au niveau 
environnemental.  Les indices cumulatif Malmquist et Fisher sont utilisées pour faire des 
inférences sur la profitabilité, la productivité et les changements technologiques en 
réponse à l’adoption de pratiques bénéfiques à l’environnement. Nos résultats diffèrent 
d’une pratique à une autre en ce qui concerne les effets des pratiques sur la profitabilité, 
l’efficience et la productivité.     

 

Keywords: Environmental efficiency, distance function, phosphorus runoff, productivity, 
profitability, technical efficiency. 
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Technical Efficiency, Environmental Efficiency, Productivity  
and Beneficial Management Practices 

 

1. Introduction 

Typically, farmers produce good outputs such as milk and maize (“goods” henceforth), 

but also undesirable outputs (“bads” henceforth) such as excessive phosphorus or 

sediments. They must allocate marketable inputs efficiently to be competitive, and are 

increasingly under pressure to reduce environmental damages. The analysis of technical 

efficiency in agricultural production has a long and rich history (e.g., Farrell, 1957; 

Timmer, 1971), but its linkage to environmental efficiency is fairly recent (Reinhard, 

Lowell and Thijssen, 1999). Concerns about climate change, biodiversity and water 

pollution have boosted interest in mitigating the environmental consequences of 

agriculture through Best Management Practices (BMPs). Hence, the extent by which 

BMPs may impact on measured efficiencies and other aspects of economic performance 

has important public policy implications.  

Atkinson and Dorfman (2005)1 analyze economic performance of firms producing 

good and bad outputs by estimating a cost function. Their approach entails disaggregating 

a subset of inputs into abatement and non-abatement components to calculate their effect 

on costs. However, this approach usually does not consider the abatement components of 

other inputs (see Barbera and McConnell, 1990). Another approach is to introduce one or 

more bad outputs along with good outputs in a multiproduct production function. Each 

choice of the base unconstrained emission rate thus creates a different nonlinear 

                                                            
1 Färe et al. (1993) treated environmental effects of an undesirable output and an undesirable input using 
parametric mathematical programming and non-parametric mathematical programming known as Data 
Envelopment Analysis (DEA). The DEA approach has been used extensively in studies of SO2 emission in 
electric utilities and for nitrogen and phosphorus runoff in the agricultural sector.  
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transformation of the original variables conditioning agricultural production and hence a 

new model with different elasticities, returns to scale and test statistics (Atkinson and 

Dorfman, 2005). Stochastic frontier analysis (SFA) has also been applied to cost 

functions and is most useful when production processes are subject to random shocks 

(Coelli, Singh and Fleming, 2003).2   

Following Fernandez, Koop and Steel (2000), Fernandez, Koop and Steel (2002) 

(FKS henceforth), introduce good and bad outputs in a stochastic production frontier, 

estimated with Bayesian methods, to disentangle technical and environmental 

efficiencies. Technical efficiency is the ratio of actual output and the maximum possible 

output predicted by an estimated frontier. FKS’s (2002, p. 433) definition of 

environmental efficiency aims to answer the following question: “How much pollution 

could be reduced, without sacrificing good outputs, by adopting best-practice 

technology?” (p. 433). FKS (2002) made the assumption that the frontier for the “goods” 

depends only on input quantities, whereas the frontier for the “bads” is determined by the 

amount of good outputs produced. A key assumption of FKS (2002) is that of a separable 

technology allowing for the aggregation of inputs and outputs.  

The direct estimation of a cost frontier is impractical in some cases (e.g. when 

input prices do not vary much across firms) or is inappropriate because of systematic 

deviations from cost-minimizing behavior. This is the case in an industry where 

regulatory factors cause shadow prices to deviate from market prices in a systematic way. 

In these situations, the duality between cost and production functions vanishes, and the 

resulting bias in the cost frontier estimates makes the efficiency calculation and 
                                                            
2 Schmidt and Lovell (1979) described how one could estimate a Cobb-Douglas stochastic cost frontier and 
then use duality to derive the implicit production frontiers. With these two frontiers, one could measure cost 
efficiency and technical efficiency, and hence allocative efficiency residually.  
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decomposition biased as well (Coelli, Singh and Fleming, 2003). A possible solution is 

the use of a shadow cost function, which explicitly models systematic deviations from 

allocative efficiency. This can be a complex exercise even when simplifying assumptions 

are made to obtain a tractable model (Coelli, Singh and Fleming, 2003). Reinhard and 

Thijssen (2000) base their analysis of environmental efficiency on a system of equations 

estimating shadow input costs. In effect, firms minimize shadow costs (or behavioral 

costs) rather than actual costs. The authors compute nitrogen efficiency through technical 

and allocative components.3 Another solution is to obtain a direct estimate of the primal 

production technology, and then derive the implicit cost frontier. Bravo-Ureta and Rieger 

(1991) use this approach and assume that input quantities are decision variables. As 

mentioned by Coelli, Singh and Fleming (2003), this approach is not widely adopted 

because of a simultaneity bias. Finally, based on Färe et al. (2005), Huhtala and 

Marklund (2005) develop an empirical framework to estimate the shadow prices for 

environmentally detrimental outputs based on the opportunity cost of production. They 

implicitly assume that abatement is only possible by adjusting agricultural production, or 

output/value added at the farm level. Using this approach, a directional output–input 

distance function can be defined and estimated. Atkinson and Dorfman (2005) also use an 

input distance function (IDF) approach to characterize a polluting technology. The IDF 

can be interpreted as a multi-input output-requirement function that allows deviations 

from a frontier.4 Distance function approaches allow for the computation of measures 

                                                            
3 The materials balance condition of the nitrogen cycle ensures that the nitrogen surplus of output-
constrained dairy farms is minimized if farm is nitrogen efficient in the inputs. 
4 The output distance function (ODF) identifies the largest set of outputs possible given a set of inputs 
while the IDF identifies the smallest set of inputs necessary to produce a set of outputs. The ODF can thus 
be interpreted as a multi-output production function allowing deviations (distance) from the frontier. 
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reflecting the output and input relationships indicative of performance (Paul and Nehring, 

2005). As such, they are ideally suited to analyze efficiency at the watershed level. 

In this paper we estimate technical and environmental efficiency scores as well as 

indices of productivity and profitability and assess the impact of BMPs on them. We 

follow Atkinson and Dorfman (2005) in relying on a distance function with a “bad” 

modeled as a technology shifter to compute our performance indicators. Monotonicity 

with respect to all inputs, “goods” and the “bad” (i.e., phosphorus), is imposed on our 

system of equations derived from a translog distance function. A constrained maximum 

likelihood estimator is used to estimate our three-equation system. We found that farms 

that are technically inefficient tend to be environmentally inefficient and that there are 

significant differences across BMPs regarding the direction and the magnitude of their 

effect on profitability, efficiency and productivity. Our analyses have focused on a 

limited number of BMPs and only one bad output. Even though BMP implementation 

and bad output reductions are costly, BMP adoption increases profitability for one of the 

BMPs considered. 

The remainder of the paper is structured as follows. The next section describes our 

methodological approach while the third section discusses some aspects of the survey 

from which our data originates. The fourth section presents estimation results, 

performance indicators and how the latter are affected by BMPs. The last section 

concludes the paper.   

 

2. Methodological approach 

2.1. Input distance function of “goods” with “bads” as technological shifters 
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Let us define   , , N
Nx x R x 1   as a vector of inputs and let  , , M

My y R y 1   be a 

vector of good outputs. Disregarding the “bads”, the production technology is:  

(1)     , , : can produce L x y x y x y       

This representation is a multi-output, multi-input specification of the technology set that 

allows for interactions among these netputs. We define the “bads” as: 

 (2)  ,bb x y            

The production of “bads” is a function of the inputs, the “goods” and the state of 

technology b . Symmetric treatment of “bads” and “goods” using an input distance 

function can be specified as in Färe and Primont (1995): 

(3)         , , sup : , , / , ,ID L
l

l l y b x y b x x b y     

Here, the “goods” and the “bads” are held constant and inputs are proportionally scaled 

downward to their minimum required level. Since the input distance function in (3) is 

dual to the cost function, we can write:  

(4)       , , min : , ,IC D 
x

y b x px y b x 1        

where  , , N
Np p R p 1   is the vector of input prices and   , ,C y b x  is a cost 

function.  Equation (4) implies that unless inputs are used at their cost-minimizing 

proportions and levels, the input distance measure will be greater than one. Taking the 

first order conditions, the shadow value of each input is given by:   

(5)      , , , ,I
xC D p y b p y b x         
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where   , ,C y b p
 

is the value of the Lagrange multiplier5 and 

        , , , , , , , ,I I I
x nD D x D x       y b x y b x y b x1 . Treating the “bads” as 

exogenous shifters of the technology set allows us to write (3) as:  

(6)       , | sup : / , | , |ID L
l

l l y x b x y b x y b       

The input distance function is monotonically non decreasing in inputs  I
nD x  0  and 

the “bads”  ID b  0 6 and monotonically non increasing in outputs  I
mD y  0 .  

This specification of the distance function enables us to compute technological 

efficiencies and other measures of performance conditioned on levels of bad outputs. 

 

2.2. Input distance function of the “bads” 

In FKS (2002), the frontier for the “bads” is conditioned by the amount of “goods” 

produced as some “goods” must be sacrificed to lower the “bads”. Consequently, the 

frontier of the “bads” depicts the cleanest possible technology to produce a given bundle 

of “goods”. The firms' environmental efficiencies are defined as the ratio of the minimum 

bad aggregate output and the observed bad aggregate output.7  The assumption that 

“goods” are function only of inputs and “bads” are function only of “goods” is 

convenient, but it might be too restrictive.  An alternative is to treat the “goods” as 

                                                            
5 For more details, see Rodriguez-Alvarez, del Rosal and Bonanos-Pino (2007). 
6 To get this result, Atkinson and Dorfman (2005) assume that the “bads” can only be decreased and that, 
following Pittman (1983), with constant “goods” and technology, “bads” can only be reduced through 
increased usage of at least some inputs.  
7 As mentioned by FKS (2002, p.433), one could construct a single frontier defined as the maximal 
combinations of good outputs given quantities of bad outputs and inputs. Under a separability assumption, 
this approach essentially reduces to treating the two types of outputs differently in the same aggregator and 
it does not allow for a natural separation of technical and environmental efficiencies because a single 
frontier is generated.  The implication is that a fully technically efficient farm is also fully environmentally 
efficient.  
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exogenous shifters in the technology set of the “bads”. Conditional on the level of good 

outputs, efficiency measures over the “bads” and the inputs are well defined. The frontier 

for the “bads” being measured for given levels of “goods” requires that we aggregate our 

good outputs into a single aggregate metric. To this end, we follow FKS (2000) and 

model the production technology of the “goods” using the following aggregator: 

(7)  
 q qM

q q
m

m

G y






 
  
 


1
1

1
 

with 0q  .  This constant elasticity of transformation aggregator was first developed by 

Powell and Gruen (1968) to analyze agricultural supply. If q is zero, products cannot be 

substituted while a value of infinity implies perfect substitution in production. In this 

“reverse” SFA framework, any systematic negative deviation is interpreted as 

environmental inefficiency. Treating the “goods” as exogenous shifters of the technology 

set allows us to define the IDF of the “bads” as:  

(8)       , | sup : / , | , |ID L 


i
i ib x y x b y x b y  

This specification allows us to estimate environmental efficiencies conditioned on levels 

of good outputs. 

    

2.3. Empirical specification and estimation 

We assume that the IDF in (6) and (8) can be approximated by a translog functional form 

with capital, denoted by k , treated as a quasi-fixed input. Following Paul and Nehring 

(2005) we use farms’ and farmers’ specific characteristics denoted by vector r  to account 

for heterogeneity. Thus for farms , ,f F1  the technology can be depicted as follows: 
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(9) 

 

   

   

ln ln ln

ln ln ln ln

ln ln ln ln ln ln

ln ln ln ln l

if j jf i if z zf m mf n nf
j i z m n

mm mf m f zz zf z f
m m z z

nn nf n f if if mn mf nf
n n m n

zm zf mf m if mf im
z m k m

r b y x

y y b b

x x y x

b y y

   
 

 


       

 

 

  

    

 

 

 

k

k k

k

a a k a a a a a

a a

a a k k a

a a k a

00

1 2 1 2

1 2 1 2

 

n ln

ln ln ln ln ln

if mf
i m

zn zf nf n if nf f
z n k n

y

b x x h  



 



ka a k e

  

 

where mfy  represent quantities of “goods” m , zfb  stand for quantities of “bads” z , nfx   

are quantities for the n variable inputs, k  is the level of capital and jfr  and if  are 

respectively external farm specific variables j  and i . Finally,  

(10)    expf f fh v ue           

is an additive error with a symmetric noise component, fv  with zero mean and a half-

normal distribution component fu .  

External variables appears in two different ways in equation (9). Some of them 

 jfr  act only as external effects while others  if  act as production shifters (first order 

polynomial and in interaction with the outputs).8 This introduces some flexibility in the 

IDF which will be useful in our analysis of the impacts of BMPs on productivity and 

profitability.  

Taking logs and deriving with respect to input quantities, equation (5) can be 

written as: 

(11) ln lnI
n n nD x w x C          

                                                            
8 We follow Paul and Nehring (2005) with their external or shift factors. Fuentes, Grifell-Tatjé and 
Perelman (2001) introduce the time trend in the same way and interaction effects with the inputs. This 
approach is also close to the one applied by Rodriguez-Alvarez et al. (2007) who treat some external factors 
as quasi-fixed inputs in their description of the production process.   
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where nw  is the price of input nx  and C  is the total cost of variables inputs.9 Using (9) 

and (11) the cost minimisation condition is (Färe and Primont, 1995):  

(12)  ln ln ln lnn n
n n nn n mn m zn z n

n m z

w x
x y b

C ka a k a a a x 


       1 2    

We assume that costs are being systematically minimized and that the error terms nx  have 

zero mean. Parametric restrictions are imposed when estimating (9).10  Symmetry 

requires that: 

(13) 

, , , ,

, , , ,

, , , ,

, , ,

mm m m

zz z z

nn n n

kk k k

m m m m

z z z z

n n n n

k k k k

a a

a a

a a

a a

 

 

 

 

   
   
   
   

        

In addition, linear homogeneity in variables input quantities implies: n
n

a 1 ; 

nn nn nn
n n n n

  
 

    a a a 0 ; ,mn
n

m a 0 ; ,zn
n

z a 0  and ,kn
n

k a 0 . 

The estimated distance system consists of n  equations: the distance function represented 

by equation (9) estimated subject to (10), and n 1  input shares first order conditions. 

Following Kumbhakar and Tsionas (2005), we assume that v  and u  are mutually 

independent and independent of the explanatory variables. We also assume that 

    , ff n f nN Ix    1 10�  where   is a    n n  1 1  covariance matrix,  ,f vv N s 20�  

and  ,f f uu N z d s  2�  (i.e., u  follows a half-normal distribution). z  represents a set of 

                                                            
9 Under the assumption that capital is quasi-fixed, our analysis focuses on the sub-cost function with non-
capital inputs i.e. labour, fertilizers and herbicides. 
10 These constraints can be imposed by normalizing the function by one of the outputs (Paul, Johnston and 
Frengley, 2000; Cuesta, Lovell and Zofio, 2009) or by one input (Paul and Nehring, 2005). As mentioned 
by Atkinson, Färe and Primont (2003), a direct estimation with linear homogeneity imposed via parametric 
restriction has the advantage of automatically generating the fitted distance function, and the partial 
derivatives of its log. 
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variables that conditions differences in technical efficiency across farms and d  is a vector 

of corresponding coefficients as in Kumbhakar, Ghosh and McGuckin (1991) and Battese 

and Coelli (1995). Given the above distributional assumptions and following Battese and 

Corra (1977), the likelihood function of the model is: 

(14) 

     ln ln ln ln

ln
F F

f
f f f

f f

F n F F
L p s

e g
x x e s

s g
 

 


    

 
           

 

2

1 2 2

1 1

1
2

2 2 2
1

1 2

   

where f f fu v e ,     is the cumulative distribution function of a standard normal 

random variable, v u s s s2 2 2  and  ,u g s s2 2 0 1 . If g 0 , then all deviations from the 

frontier are due to noise, while g 1 means all deviations are due to technical 

inefficiency.  The model is estimated with a constrained maximum likelihood estimator.11  

 

2.4. General performance measures 

The above IDF specification is used to compute several performance measures pertaining 

to technical efficiency, productivity, profitability and environmental efficiency. Index 

numbers are used to analyze the impact of BMPs on the performance measures. This 

requires the estimation of distance functions on samples of farms that have adopted a 

given BMP and on farms that have not and rejection of the null of parameter equality to 

validate that adopters and non-adopters have different technologies.     

                                                            
11 Outputs and inputs may be endogenous. Rodrıguez-Alvarez and Lovell (2004), Atkinson, Cornwell and 
Honerkamp (2003) and Atkinson and Dorfman (2005) use instrumental variables techniques to deal with 
this endogeneity issue. In their application featuring electricity power plants, Atkinson and Dorfman (2005) 
examine identification issues using Hansen’s (1982) J test in a GMM framework.  However, given that 
Coelli and Perelman (2000) and Rodriguez-Alvarez et al. (2007) define the input distance function as the 
radial (proportional) expansion of all inputs (given the output level), the endogeneity problem does not 
arise if the random disturbance affecting production processes changes all inputs in the same proportion 
(Roibas and Arias, 2004). 
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Performance impacts of the farms’ – and farmers’ – characteristics 

The farms’ and farmers’ characteristics can be construed as fixed effects. The distance 

function elasticities for these external factors are given by: 

(15)  
,

lnI
j

I
jD r

D re     and 
,

lnI
j

I
jD

D   


e      

Input compensation for increasing “goods” 

The variable input elasticity measures the input expansion required to achieve a 1 % 

increase in mY . 

(16) 
,

ln lnI
m

I
mD Y

D Ye            

Output jointness or complementarily is measured by 
,

lnI I
m m m

m mmD y y D y
ye e b


     . Output 

complementarity implies 
,I

m mD y y
e


0 , which means that input use does not have to 

increase as much to expand my  when the level of ny  is higher. 

Scale economies 

The sum of first-order netput elasticities define the extent of scale economies or the 

increase in productivity resulting from increasing all variable inputs. In our multi-output 

context, our measure indicates how much overall input use must increase to support a 

1 % increase in all outputs. Therefore, an elasticity less than unity is indicative of 

increasing returns. 

(17) 
,

ln lnI

I
mD Y m

D Ye           

This measure, developed by Baumol, Panzar and Willig (1982) for a multiple-output cost 

model (Paul and Nehring, 2005), is similar to a cost function’s elasticity of size which 

compares marginal and average costs to produce all outputs. 

Technical efficiency 
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Farm f ’s level of technical efficiency (TE) is given by  ˆexpf fTE u  . We use Jondrow 

et al.‘s (1982) predictor of fu : 

(18) 
 
 

ˆ
f

f f

f

u
u u

u

f s
s

s




 


 
  
  

       

where  ˆ ˆ, ,I
fu D  q gy x , v  s g s2 2 ,  f   and     are respectively the probability 

density function (pdf) and the cumulative distribution function (cdf) of a standard normal 

random variable. The normalization of ˆ fu  guarantees that fTE 0 1 . fTE  compares the 

input use by an efficient farm on the frontier to that of farm f to produce the same 

outputs: the lower fTE ,  the less efficient farm f is. 

 

2.5. BMPs adoption impact measures 

Malmquist Input-Based Productivity Index 

The Malmquist index is a measure of true productivity change accounting for “bads” and 

is defined by  ratios of distance functions which can be interpreted as the product of an 

efficiency change index and the geometric mean of  two indices measuring technological 

change or how the frontier changes when BMP are accounted for (Caves, Christensen and 

Diewert, 1982). Formally, the index is defined as (Färe, Grosskopf and Lovell, 1994, pp. 

227-232): 
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The product of ratios in the second bracket can be thought of as a measure of 

technological change; the first bracket captures the changes in efficiency between the two 
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periods, as measured by the ratio of the two efficiencies. A value of M greater (less) than 

unity indicates an improvement (deterioration) in productivity. Given the objective of the 

study at hand, we are interested in the comparison of performances of more than two 

groups.  In this instance, “circularity” is a desired property for a bilateral productivity 

index.12 Pastor and Lovell (2005) show that the contemporaneous Malmquist productivity 

index is not circular and can give conflicting signals. Camanho and Dyson (2006) define 

a Malmquist-based performance measures for groups with the circularity property: 

(20) 
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where the parameter F  represents the number of farms in a given subset of the database. 

The ratio inside square brackets evaluates the gap between the frontiers of the two groups 

while the ratio outside square brackets compares within-group efficiency spreads. 

Following Camanho and Dyson (2006), we compute an overall performance index that 

satisfies the circular relation and can be used for the comparison of more than 2 two 

groups. This index is obtained by pooling all the data and establishes a technology for 

this pooled set.13 The index is computed as follows  

                                                            
12 The circularity property posits that an index that compares productivity between units k and f, and 
between l and f, must be able to establish a productivity comparison between units k and l via the arbitrary 
third unit, f, that is independent of the chosen third unit, f (Førsund, 2002) . 
13 One could also choose one group as a base but in that case, the value of the index depends on the 
technology chosen. It implies that there are some reasons for picking a specific reference base. Examples 
are Berg et al. (1993) and Camanho and Dyson (2006). As mentioned by Førsund (2002), in a time series 
context, this procedure is similar to the notions of inter temporal technology and of accumulating 
technology. 
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(21) 
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where parameter P represents the pooled dataset and iF  the number of farm in each group 

i  , ,i N 1 . Let PB
adjMF  be the product of ratios in the second bracket and PBME  the first 

bracket. A value of PBME  below one indicates that there is greater structural efficiency in 

group B than in the pooled dataset P. A value of PB
adjMF  below one indicates superior 

productivity of the technological frontier of group B compared to group P. And finally, a 

value of PB
adjM  below (above) unity indicates a superior (inferior) productivity of group B 

compared to group P. The index in (21) provides a robust performance ranking of groups 

of farms operating under different conditions. Camanho and Dyson (2006, p.40) indicate 

that “The advantage of this index is that the comparison between frontiers is made for a 

larger number of points, covering a wider range of activity profiles … The additional 

information considered in the adjusted index guarantees its circularity.”   

The profitability change 

Using Althin, Färe and Grosskopf’s (1996) Fisher-based index, the profitability change 

when adopting a BMP can be expressed as:   

(22) 
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e  is the primal input-based measure of elasticity of scale as defined before. 

There is an improvement when F 


1  since Georgescu-Roegen’s (1951) “return on the 
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dollar” is higher for the BMP adopters (group B).14  As in Althin, Färe and Grosskopf 

(1996), our analysis of the impacts of BMP adoption on productivity and profitability 

entails estimating separate distance function for each individual BMP.15 

 

2.6. Environmental performances measures 

Shadow price of the “bads” 

The shadow price of the “bads” is: 

(23) 
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We assume that the set of inputs x  is a cost-minimizing solution and that    , ,C y b p  is 

a function of shadow prices. We then assume that the observed price equals the shadow 

price for one input. Assuming that herbicide is this input, its shadow price is given by (5). 

By taking the ratio of the shadow price of the “bads” to the observed price of herbicide, 

the   , ,C y b p ’s cancel out and we can solve for the estimated shadow price of the 

“bads” in terms of ratios of estimated partial derivatives and the observed price of 

herbicide. 

(24) 
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14 This measure suggested by Georgescu-Roegen (1951) is a simplified measure of profitability change 
because it omits mixed terms (see Althin, Färe and Grosskopf, 1996). 
15 We expect that adoption of a BMP would induce a structural change in the IDF. For example, manure 
injection implies a modification –or a replacement- of machinery, an increase in the time used to spread the 
manure and then a possible reallocation of the use of different inputs. Using a Chow test (see Greene, 
2008), we test the hypothesis that the coefficient vectors are the same for the subset of adopters and non-
adopters. Consistent with our expectations, we reject the null hypothesis of equal coefficients for herbicides 
controls and manure injection BMPs (see table A4 in appendix). The size of our data set prevented us from 
doing estimation on sub-samples of farmers adopting more than one BMP. 
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Because of the log representation of the distance function, we can compute the elasticity 

that measures the percentage increase in the shadow price of the bad in response to a 1% 

decrease in bad output. 

Environmental Efficiency Scores 

We use Reinhard, Lowell and Thijssen’s (1999, 2002) approach to derive a stochastic 

measure of producers’ environmental efficiency (EE). The log of the IDF of an 

environmentally efficient producer is obtained by replacing zfb  with zfbt  where t 1  

and by setting ˆFu 0 . Setting the production function for farm f  equal to the production 

function of an environmentally efficient farm, we can solve for 

ln ln ln lnf f fEE b b  t t :  

 (25) .
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In (25), we use the predictor ˆ fu  given by equation (18) . Environmental efficiency is 

calculated using the positive root in (25)16 and is used to compute the environmental 

efficiency score (EES) for each farm as  minzf zf zfEES EE EE . 

Inputs compensation for reducing “bads”  

 Our objective is to measure the input expansion required to compensate for a 1% 

decrease in the “bads” zb  while producing the same level of “goods”. 

(26) 
,

ln lnI
z

I
zD b

D be   


   

                                                            
16 Reinhard, Lowell and Thijssen (1999) note that the EE measure adds independent information only if the 
outputs’ elasticities are variable, a property of the translog IDF. 
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Environmental Efficiency 

Firm f ’s level of Environmental Efficiency (EE) is computed using Jondrow et al.’s 

(1982) results (see equation (18)) with the IDF of the “bads” with  an aggregate “good” 

used as a technological shifter.  This EE measure of environmental efficiency is an 

alternative to the EES measure previously described.  The degree of consistency between 

the two measures can be ascertained by computing the level of correlation.  A strong 

positive correlation would be indicative of robust results.      

 

3. The data 

Our sample consists of 210 observations. Agricultural production consists of good 

outputs, namely livestock and crops, and bad outputs associated with runoff and leaching 

of chemicals and sediments. 

The “goods” 

Crops  Cy  and animal  Ay  production are measured in thousands of dollars. The 

percentage of producers claiming to raise beef cattle and dairy cows account for 59.5% 

and 52.9% of all producers in our sample as many are engaged in both productions. Hog 

producers make up a smaller share at 20.8%, but they marketed a total of 197,000 hogs 

compared to 8,700 heads for beef producers. The dairy producers owned a total of 5,600 

dairy cows. Finally, the total acreage cultivated with crops (hay, alfalfa, pulses, maize 

and other cereals) amounted to 33,380 acres. 

The “bads” 

Agricultural production is also assumed to generate “bads”. They are identified by the 

levels of emission (kilograms) of nitrogen  Nb , phosphorous  Pb  and sediments  Sb . 
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Chemicals’ runoff levels are computed through a simulation program that identifies the 

amount of chemical leached from individual Relatively Homogeneous Hydrological Units 

(RHHUs).17 The correlation coefficients between these “bads” are so high18 that only 

phosphorus runoff is considered in the empirical application.  

Variables inputs 

Quantities of labor  Lx  are in working hour while the quantities of fertilizers  Fx  and 

herbicides  Hx  are in kg per acres.   

Quasi-fixed input 

Capital k  is assumed to be quasi-fixed in the short run. It is proxied by owned and rented 

machinery and equipment estimated value. 

BMPs variables 

There are four binary BMP variables that take a value of one when the BMP is 

implemented and zero otherwise. As mentioned before, some BMP variables act as 

production shifters and they are: crop rotation cycles  rotation ,  injection of liquid and 

semi-liquid manure  manure  in the soil within 24 hours of the initial spreading and 

herbicide control and reduction measures  herbcont . Crop rotation is considered to be 

practiced if it covers over half of the cultivated land and we merged the herbicide control 

and reduction practices because of their high correlation. The establishment and 

                                                            
17 RHHUs correspond to small sub-watersheds whose drainage structures are derived from a relatively high 
resolution Digital Elevation Model (DEM). In some cases, two or more farms were located on the same 
RHHU and therefore were associated with the same level of bad output. 
18 The correlation coefficient between nitrogen runoff and phosphorus runoff was found to be 0.96. The 
correlation coefficients of the sediment runoff with nitrogen runoff and phosphors runoff were 0.82 and 
0.87, respectively. 



 
 

19

maintenance of a riparian buffer zone larger than one meter  bufferr  is used as an external 

effect.  

Farm characteristics 

Other variables that reflect “environmental sensibility” are added. We hypothesize that 

having a certificate for biological/organic production  organicr  and belonging to an agro-

environmental club  envclubr  also condition the IDF. 

Farm and producer’s attributes 

Producers’ socio-economic attributes are used as explanatory variables in the 

decomposition of efficiency scores. The variable capturing whether the residence of the 

primary producer is on the farm or not  Resfarm  and gender  Gender  are modelled 

through binary variables. Gender  takes a value of one when the primary producer is a 

woman. The level of education  Education  is specified through an ordered variable. It 

takes the value of 0 when secondary school is attained and 1 when the producer has a 

degree from a technical school, and/or a community college and/or a university. The age 

of the producer  Age  is introduced through a dummy variable taking a value of zero if 

55age    and a value of one if 55age   years. Land use  Use  and farm size  Size  are 

added to reflect the potential relationship between efficiencies and agricultural 

production. The variable Use equals 1 if the value of crops produced is higher than the value of 

livestock and dairy l productions and 0 otherwise. Finally, another variable, the level of 

annual expenditure on telecommunication services  Telcom , is used to capture a 

producer’s exposure to information.  Then, technical inefficiency is modelled as: 

(27) f f f f f f f fu Age Gender Education Use Size Resfarm Telcomd d d d d d d      1 2 3 4 5 6 7  
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The summary statistics of the variables used in the distance function analysis are 

presented in table 1.  

4. Results 

4.1. General results 

The coefficient estimates of the distance function system are displayed in table 2. Many 

estimated coefficients are significant and have the expected sign. The model satisfies the 

curvature conditions, i.e. the distance function is monotonically non-decreasing in inputs 

and non-increasing in “goods” as well as quasi-concave in variable inputs.19 The 

monotonicity condition of the “bads” is also met. The input cross-effects coefficients are 

predominantly significant and positive, thus indicating complementarities between 

fertilizers, herbicides and labor. The “goods” cross-effect coefficient is positive and 

significant, reflecting substitution between the two outputs. The cross-effect coefficient 

of the two “goods” and the “bads” are non-significant, indicating that the link between 

“goods” and “bads” is noisy. Output mix, including the “bads” seems to be less fixed 

across farm types than the input composition as in Paul and Nehring (2005).20 Generally, 

these results suggest that diversification at the farm level does not contribute significantly 

to overall economic performance. The cross output-input terms are not significant for 

animal production, which is consistent with the separability hypothesis between outputs 

and inputs. However, this is not the case for the crop output.  

The performance impacts of the farms and farmers’ characteristics are given by 

the estimated coefficient in table 2. Adopting a riparian buffer tends to have a positive 

                                                            
19 Because we have imposed linear homogeneity, the input distance function must be quasi-concave.  
20 Just and Pope (1978) and Paul and Nehring (2005) contend that the impact of input use on risk may 
induce a correlation between outputs that would be independent without risk. The idea is that uncertainty 
causes variations in the marginal products or contributions of inputs across products.    
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impact on the overall performance of the farm - a negative impact on the value of the 

distance function- while having an organic product certificate tends to have a negative 

impact on overall performance. The mean of the performance impacts of the farm– and 

farmer-specific variables that can interact with the level of production    is shown in 

table 4. The computed means of the overall impact of the three variables are negative 

implying a reduction of the IDF.  

The mean value of the predicted distance function is 1.413. We estimate the same 

distance function without taking into account the “bads” as a technological shifter. The 

mean value of the predicted IDF is 1.430 when the “bads” are not considered as a 

technological shifter. This difference confirms that the potential to increase production 

with the given bundle of inputs decreases when farms are not allowed to freely dispose of 

phosphorus emissions. The two mean values are statistically different at the 5% level, as 

expected.  

 

4.2. Technical efficiency (TE) 

Table 2 also reports on the parameters conditioning the level of technical efficiency of 

farms. The level of education and the size of the farm have a significant and positive 

impact on TE. Bigger farms and producers who hold a technical school, college or 

university degree are generally more efficient. The log-likelihood is parameterized in 

terms of  u v u g s s s2 2 2 . The significant estimate (i.e., 0.583) indicates that, about half 

of the variation in the composite error term is due to the noise component. This is similar 

to the estimated value of 0.58 found in Reinhard, Lowell and Thijssen’s (1999) analysis 
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of Dutch dairy farms. The mean of the predicted TE is 0.426.21 Overall the estimated 

mean value of the predicted TE is low.22 Figure 1 plots the density distribution of 

predicted technical efficiency within the dataset. The mean of the predicted TE scores of 

farms primarily involved in animal production is higher than the one for farms involved 

in crop production (i.e., 0.466 and 0.428 are statistically different at the 5% level of 

significance). The least efficient farm has a TE score of 0.186 while the most efficient 

farm has a TE score of 0.989.  This wide range in technical efficiencies is consistent with 

the fact that the number of farms is decreasing in spite of generous farm programs.  

 

4.3. Scale elasticities 

The measure of scale elasticity is 0.644 which suggests that there are significant 

economies of scale (see table 3). The scale elasticity has a value of 0.682 when only 

farms involved in crop production are considered and a value of 0.625 for farms involved 

only in animal production. The difference between these two values is significant at the 

5% level. These elasticities are quite close to the 0.65 obtained by Paul and Nehring for 

the United States (2005).   A value of 1 is consistent with constant return to scale  

Individual output contributions embodied in the overall scale elasticitiy are 

presented in table 3. The results show that more variable input are needed to increase 

crop production by 1% than to increase livestock production by the same level. The 

                                                            
21 Without taking into account the “bads” as a technological shifter in the production process, the mean 
value of the predicted TE is 0.471. The null hypothesis of no significant difference between the means of 
TE with and without “bads” is rejected at the 5 % level.  
22 Coelli, Singh and Fleming (2003) get a predicted mean technical efficiency of 0.86 from their sample of 
Indian dairy processing firms. Paul and Nehring’s (2005) predicted mean TE is quite high at 0.93. Their 
IDF model was applied to US farm level data. Fernandez, Koop and Steel (2002) report a median TE of 
0.67 for their sample of US dairy farms. The median for our study is 0.49. Finally, Atkinson and Dorfman 
(2005) report a weighted average TE of 0.55. 
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coefficients have the correct sign and are significant at the 5%.level. The values of labor 

and fertilizer elasticities are respectively -0.621 and -0.291. The value of the shadow 

share of labor is smaller than the observed mean share (72.38%). This finding is 

indicative of low labor productivity.   

    

4.4. The impact of best management practices 

The adoption of a BMP is likely to induce a structural change in the IDF because some 

inputs are likely to interact in different ways when a BMP is implemented.  In some 

cases, new machinery may be needed that may increase or decrease the demand for other 

inputs like labour. We relied on a Chow test (see Greene, 2008), with a null hypothesis of 

equal coefficient vectors for estimations done on subsamples of adopters and non-

adopters, to determine whether BMP adopters actually use a different technology. 

Consistent with our expectations, we rejected the null hypothesis of equal coefficients for 

herbicides controls and manure injection BMPs (see table A4 in appendix).23 

Accordingly, we restricted our analyses regarding the potential impact of BMPs to the 

two aforementioned BMPs.  

Figures 5-8 present the impacts of BMP adoption on efficiency, productivity and 

profitability. The methods used to compute the productivity change as well as the 

profitability change look at marginal changes represented by the adoption of the BMP. In 

order to make figures 5-8 as illustrative as possible, we represent the inverses of PB
adjMF , 

PBME , PB
adjM  and F


. As a result, a value greater (less) than one represents an 

improvement (a deterioration). 

                                                            
23 The size of our data set prevented us from doing estimation on sub-samples of farmers adopting more 
than one BMP. 
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Farms that have adopted herbicides control are technically less efficient 

(0.939<1), but enjoy a -very small- technological advantage (1.008>1). In this case, the 

overall effect is a decline in productivity (0.947>1). However, the adoption of herbicide 

control also tends to slightly decrease economies of scale, as indicated by the profitability 

index (1.054<1). This net impact on the profitability index implies an important change 

in scale elasticity and then, in the best practice frontier. In contrast, the technical 

efficiency of farms that have adopted manure injection tends to be higher.  These farms 

also have a technological advantage over farms that have not adopted this BMP. The net 

positive effect on productivity is 1.142>1. Furthermore, profitability increases sharply 

when manure injection within 24 hours is adopted (1.136>1), indicating an increase in 

returns to scale. Our results uncovered positive environmental effects, namely a reduction 

of pollutant induced by the adoption of the BMP, and positive private effects. Ambec and 

Lanoie (2007) and Horbach (2008) suggest that the positive private gains can be 

attributed to reductions in the cost of regulations and to the fact that environmental 

management tools provide incentives to develop new cost saving practices (specifically 

material and energy savings). These innovations induced by the adoption of 

environmentally-friendly practices are at the heart of the Porter-hypothesis (Porter, 1991; 

Porter and van der Linde, 1995).24 Piot-Lepetit and Le Moing (2007) also found a gain in 

productivity resulting from the relationship between efficiency and environmental 

regulation in the French pig sector, but Managi (2004) did not find evidence in support of 

the Porter-hypothesis when analyzing the US agricultural sector. 

                                                            
24 Horbach (2008: p. 172) concludes that “…An environmentally oriented research policy has not only to 
regard traditional instruments like the improvement of technological capabilities of a firm, but also the 
coordination with soft environmental policy instruments like the introduction of environmental 
management systems.” 
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4.5. The “bads”  

The shadow value of the “bads” 

The estimated shadow value of phosphorus runoff (i.e. marginal abatement cost) has a 

mean value of 0.063 with a standard deviation of 0.001. The shadow price of the “bad” 

for farms primarily involved in livestock production is 0.0652, which is higher than the 

value of 0.062 for farms involved in crop production. The difference between these two 

estimates is significant at the 5% level. As in Ball et al. (2002), reducing a “bad” output 

is costly.25 A 10% reduction in phosphorus induces a 0.628 % increase in cost, evaluated 

at the mean values of the data. In our sample, the average value for the sub-cost function 

is $73,668, which implies that the cost of a 10% runoff reduction would be $461.24.26 

The effect of the scale of crop and animal production on the marginal abatement cost can 

also be estimated. These coefficients have a negative sign, but are not significant at 5 %. 

This suggests that the marginal abatement cost of runoff weakly increases with the scale 

of production.  There is a small difference between animal and crop productions. The 

shadow value of the bad is higher for farms primarily involved in animal production than 

for farms specialized in crop production. 

Environmental Efficiency Measures 

The mean of the computed EES is 0.486. Figure 2 plots the density distribution of 

computed EES within the dataset and figure 3 the density distribution of the estimated 

                                                            
25 Our estimate is higher than Ball et al. (2002)’s 0.09% and 0.08% for leaching and runoff. 
26 Using data covering the 2001-2003 period, Gangbazo and Le Page (2005) find that phosphorus runoff 
has to decrease by 30.8% in the Chaudière watershed to reach the target of 0.030 mg/l to prevent 
eutrophication at the water quality stations (table 4.2. p. 26). These authors also find that 33.8% of the 
phosphorus runoff is a non point source pollution generated to a large extent by agricultural activities (table 
4.3. p. 28). Clearly, discussing the cost of a 10% reduction is a sensible exercise. 
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EE. The mean of the EES for farms specialized in animal production is smaller than its  

crop production counterpart: 0.380 versus 0.504. The difference is significant at the 5% 

level. The correlation between the two sets of environmental efficiencies EES and EE is 

high. This Spearman rank correlation between the two efficiencies is 0.71.  

Table 5 reports the Spearman rank correlation between technical and 

environmental efficiencies. In this table, the dataset is subdivided into subsets based on 

the predicted TE. Table 5 shows that the correlation is strongest for the 75th percentile to 

the maximum of the TE within the dataset and that there is no statistically significant 

correlation between EE and TE when the latter lies between the median and the 75th 

percentile. Overall there is a tendency for farms that are technically inefficient to also be 

environmentally inefficient. A similar finding was reported by Reinhard, Lowell and 

Thijssen (1999) and FKS (2002).27 Because of the low level of predicted TE, our findings 

suggest that for many farms, pollution could be reduced at no cost in terms of good 

output foregone.  

The input compensation for reducing “bads” 

Figure 4 plots the distribution of the “bads” elasticity using a model where 

“goods” are introduced as technological shifters in the production frontier of phosphorus. 

This elasticity tells us about the percentage increase in all inputs necessary to decrease 

the level of phosphorus emissions by 1%. The mean value of the input share of the 

“bads” is -0.048 which implies that overall inputs use must decrease by 4.8% to decrease 

phosphorus emission by 1% while keeping the good outputs at the same levels. However, 

                                                            
27 Reinhard et al. (1999) have found a positive Spearman rank correlation of 0.87 in their sample of Dutch 
dairy farms. A similar finding is reported for US dairy farms by FKS (2002) even if the correlation 
coefficient is noticeably lower 0.40. 
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because of the values spanned by the plot in Figure 4, we divided our sample in two 

groups to gain more insights about the elasticity of the “bads”. In the first group, reducing 

the level of inputs “suffices” to reduce the level of “bads” without altering the level of 

“goods” outputs. The mean value of predicted “bads” elasticity of these farms that have 

to reduce the level of inputs is -5.09% for a 1% decrease in the “bads”. In the second 

group, the “bads” ’s elasticity is positive implying that input use must increase for at least 

one input. Input costs must increase by 1.80% to implement a 1% reduction in “bads” 

output.  This subset of our sample includes only 10 farms. 

 

5. Conclusion 

The variability in farmers’ technical efficiency is likely to influence observed 

environmental performance, as does the adoption or non-adoption of Best Management 

Practices (BMPs). A distance function approach is implemented to empirically analyze 

technical and environmental efficiencies. In the context of multiple good and bad outputs, 

two types of input distance function (IDF) are estimated. For the first type, a bad output is 

modeled as a technological shifter in an IDF for good outputs.  For the second type, good 

outputs are aggregated into one good output which is introduced as a technological shifter 

in an IDF for the bad output. Systems of equations accounting for the monotonicity 

property (inputs, outputs and undesirables) are estimated. The IDF are approximated by a 

flexible translog functional form which is estimated using a full information maximum 

likelihood method. We rely on a unique data set covering 210 farms located in the 

Chaudière watershed, where water quality problems are acute and livestock and crop 

production intensive. Data on phosphorus, nitrogen and sediment loads have been 
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simulated through a hydrological model. These simulations identify the amount of 

chemical leached from individual Relatively Homogeneous Hydrological Units (RHHUs) 

that are then matched with the location of individual farms. 

The computed level of technical efficiency is disaggregated across farms. The 

level of education and the size of the farm have a significant and positive impact on the 

technical efficiency scores (TE).  The mean of the predicted TE suggests that less than 

half of farm diversity is explained by the broad characterization of input and output 

relationships in the model. The mean of the computed environmental efficiency (EE) is 

relatively low and a positive correlation was found between environmental and technical 

efficiencies. Our study also found that reducing phosphorus run off entails cost at the 

farm level. 

The IDF of the good output is used to compute the cumulative Malmquist-based 

productivity index and we computed measures of efficiency change, technical change and 

productivity change in response to the adoption of selected Best Management Practices 

(BMPs). The Fisher productivity index was computed and, by exploiting the duality 

between cost and input distance functions, we obtained a measure of profitability change 

when farms adopt selected BMPs. Our results show significant differences across BMPs 

regarding the direction and the magnitude of their effect on profitability, efficiency and 

productivity. Even if BMP implementation and bad output reductions are costly, 

profitability increases for one of the implemented BMPs. Bibliography 
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Table 1.  Summary statistics of variables used in the analysis 

  Mean  Standard 
Deviation 

 Minimum  Maximum 

 
“GOODS” 

        

Yield (x $1000)  103.09  325.41  0.15  2,696.16 
Animal Production (x $1000)       6.55   22.16  0.00      260.00 
 
“BADS” 

        

Nitrogen Runoff (kilograms)  14.85  12.51  0.23  46.98 
Phosphorus runoff  (kilograms)  6.35  5.69  <0.01  20.55 
Sediment runoff (kilograms)  1.53  1.39  <0.01  6.13 
 
“VARIABLE INPUTS” 

        

Labour         
 Quantity (hours)  27.56  91.59  0.03  730.10 
 Share in total Cost (%)  72.38  25.13  1.04  99.98 
Fertilizers         
 Quantity (kg/ha)  1.16  1.39  <0.01  10.91 
 Share of in Total Cost (%)  21.06  19.87  <0.01  77.33 
Herbicides         
 Quantity (kg/ha)  0.56  0.68  <0.01  4.99 
 Share in Total Cost (%)  6.56  6.90  <0.01  48.28 
 
“QUASI-FIXED INPUTS” 

        

“Quantity” of capital (x $1000)  137.77  115.10  1.79  784.50 
 
BMP/ENVIRONMENTAL VARIABLES 
(binary variables) 

        

Production shifter         
Crop Rotation  0.70  0.46  0  1 
Herbicide Control  0.38  0.49  0  1 
Manure Control Measures  0.41  0.49  0  1 
Exogenous factors         
Riparian Buffer  0.56  0.50  0  1 
Biological/organic certificate  0.03  0.18  0  1 
Belonging to an environmental club   0.62  0.49  0  1 
 
FARM AND PRODUCER’S ATTRIBUTES 

        

Age (years)  49.23  9.95  17  81 
Gender  (binary variable)  0.04  0.21  0  1 
Education (order variable)  2.31  1.04  1  5 
Residence on farm (binary variable)  0.88  0.32  0  1 
Size of farm         
 Cultivated Acres (x 100 acres)  1.29  1.47  <0.01  11.21 
 Animal Production (x 100 heads)  6.56  22.16  0.01  260 
Crop production (binary variable)  1.24  1.41  <0.01  11.21 
Telecommunication expenditures (x $1000)  1.33  1.73  0.05  15 
         
TOTAL COST OF PRODUCTION (x $1000)  73.67  239.93  0.23  2011.62 
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Table 2. Estimated coefficients of the input distance function (full sample) 

Parameters  Estimate  Standard 
Error 

 Parameters  Estimate  Standard 
Errors 

a 0   0.817  0.152  
herbicides fertilizersa    -0.173  0.014 

ripbufa   -0.024  0.035  
crop labora    0.122  0.009 

herbconta   -0.028  <0.001  
crop fertilizersa    -0.097  0.007 

bioproda   0.482  0.112  
crop herbicidesa    -0.025  0.004 

envcluba   0.025  0.035  
animal labora    -0.001  0.006 

liqmana   -0.054  0.098  
animal fertilizersa    0.001  0.005 

croprota   0.202  0.093  
animal herbicidesa    0.001  0.002 

phosphorusa   -0.007  0.027  
crop phosphorusa   0.003  0.010 

cropa   -0.860  0.053  
animal phosphorusa   -0.006  0.005 

animala   -0.102  0.033  
crop capitala    0.026  0.020 

fertilizersa   0.361  0.033  
animal capitala    -0.010  0.010 

herbicidesa   0.192  0.012  
crop croprota    -0.078  0.029 

labora   0.447  0.041  
animal croprota    0.011  0.023 

capitala   -0.033  0.049  
crop liqmana    0.007  0.023 

animal animala    -0.017  0.008  
animal liqmana    -0.016  0.021 

animal cropa    0.074  0.019  
crop contherba    -0.034  <0.001 

crop cropa    -0.071  0.017  
animal contherba    0.018  0.021 

phosphorus phosphorusa   -0.012  0.007  
phosphorus labora   0.009  0.009 

capital capitala    -0.013  0.027  
phosphorus fertilizersa   -0.007  0.007 

labor labora    -0.173  0.014  
phosphorus herbicidesa   -0.003  0.002 

fertilizers fertilizersa    0.027  0.009  
capital labora    -0.006  0.012 

herbicide herbicidea    0.146  0.010  
capital fertilizersa    0.006  0.009 

labor fertilizersa    0.146  0.010  
capital herbicidesa    0.001  0.003 

labor herbicidea    0.027  0.009       

 
Efficiency parameters 

educationd   -0.096  0.039  
used   -0.018  0.078 

sized   -0.293  0.026  
genderd   0.049  0.088 

aged   0.014  0.044  
resfarmd   -0.022  0.053 

telecomd   0.016  0.057       

 u v u


 g s s s

12 2 2

 

 0.583  0.117  
vs   0.474  0.034 
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Mean log-likelihood 3.186 Number of observations 210 
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Figure 1. Predicted technical efficiency distribution 

  

Figure 2. Predicted environmental efficiency score (EES) 
distribution 

 

Figure 3. Predicted environmental efficiency (EE) distribution 

 

Figure 4. Inputs expansion (%) required for 1% reduction in 
phosphorus emission

0
1

2
3

4
5

D
en

si
ty

.2 .4 .6 .8 1
Technical efficiency

Density Normal technical efficiency

0
1

2
3

4
D

en
si

ty

0 .2 .4 .6 .8 1
Environmental efficiency score

Density Normal environmental efficiency score
0

1
2

3
4

5
D

en
si

ty

0 .2 .4 .6 .8
Environmental efficiency

Density Normal environmental efficiency

0
.0

5
.1

.1
5

D
en

si
ty

-20 -10 0 10
Inputs expansion (%)

Density Normal inputs expansion



 
 

39

Table 3. Economic performances measures 

Parameters  Mean  Bootstrapped standard 
error of the mean 

 Normal based 95% confidence 
interval of the mean 

Technical efficiency  0.437  0.008  [ 0.422; 0.452 ] 

Distance function  1.413  0.018  [ 1.379; 1.448 ] 

Shadow value of bad  -0.063  0.001  [-0.064; -0.061] 

“input share” of crop  0.618  0.014  [ 0.592; 0.645 ] 

“input share” of animals  0.030  0.005  [ 0.020; 0.040 ] 

Scale economies  0.644  0.014  [ 0.616; 0.671 ] 

Labor elasticity  -0.621  0.011  [ -0.644; -0.599 ] 

Fertilizer elasticity  -0.291  0.010  [ -0.311; -0.272 ] 

Herbicide elasticity  -0.087  0.002  [ -0.092; -0.083 ] 

Table 4. Mean values of the overall impact of the external variables 

Parameters  Mean  Bootstrapped 
standard error of the 

mean 

 Normal based 95% confidence 
interval of the mean 

Herbicide control  -0.098  0.005  [  -0.107; -0.089 ] 

Manure injection  -0.062  0.002  [ -0.067; -0.058 ] 

Rotation cycle implementation  -0.015  0.010  [ -0.034; -0.004 ] 

Table 5. Spearman correlation rank test between predicted technical efficiency and 
environmental efficiency measures 

  Number of 
observations 

 EES  EE 

 Spearman 
correlation 
rank test 

 Prob.  
>| t | 

 Spearman 
correlation 
rank test 

 Prob. 
 >| t | 

Percentile distribution of 
predicted technical efficiency 

          

( 0; p25(=0.343) [  52  0.349   0.011  0.321  0.020 

[ p25(=0.343); p50(=0.431) [  53  0.331  0.015  0.329  0.018 

[ p50(=0.431); p75(=0.509) [  51  0.177  0.206  0.330  0.0206 

[ p75(=0.509); p100 )  54  0.590  <0.001  0.658  <0.001 

 
Technical efficiency value 

          

( 0; 0.25 [  9  0.600  0.088  0.367  0.337 

[ 0.25; 0.50 [  139  0.625  <0.001  0.605  <0.001 

[ 0.50; 0.75 [  58  0.352  0.007  0.117  0.383 

[ 0.75; 1 )  4  -0.316  0.684  -0.384  0.616 

 
Overall sample 

  
210 

  
0.713 

  
<0.001 

  
0.757 

  
<0.001 
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Figure 5. Index for the comparison of efficiency, using pooled 

dataset as the reference 

  
Figure 6. Adjusted index for the comparison of productivity of the 
farms best-practice frontiers, using pooled dataset as the reference 

 
Figure 7. Adjusted (overall) index for the ranking of performance 

given the adopted BMPs, using pooled dataset as the reference 

 
Figure 8. Index for the comparison of profitability given the 

adopted BMPs, using pooled dataset as the reference 
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Table A1. Estimated coefficients of the IDF of farms that have adopted manure injection   

Parameters  Estimate  Standard 
Error 

 Parameters  Estimate  Standard 
Errors 

a 0   0.487  0.493  
herbicides fertilizersa    -0.130  0.015 

ripbufa   0.151  0.080  
crop labora    0.114  0.014 

herbconta   -0.095  4.538  
crop fertilizersa    -0.093  0.011 

bioproda   0.262  0.214  
crop herbicidesa    -0.022  0.004 

envcluba   -0.072  0.080  
animal labora    0.013  0.011 

liqmana   -  -  
animal fertilizersa    -0.011  0.009 

croprota   -0.552  0.305  
animal herbicidesa    -0.002  0.002 

phosphorusa   0.410  0.155  
crop phosphorusa   -0.089  0.034 

cropa   -0.590  0.151  
animal phosphorusa   -0.021  0.013 

animala   -0.068  0.108  
crop capitala    0.035  0.054 

fertilizersa   0.191  0.073  
animal capitala    -0.049  0.032 

herbicidesa   0.138  0.017  
crop croprota    0.128  0.081 

labora   0.672  0.087  
animal croprota    0.023  0.047 

capitala   0.199  0.200  
crop liqmana    -  - 

animal animala    0.035  0.022  
animal liqmana    -  - 

animal cropa    0.023  0.036  
crop contherba    -0.096  0.539 

crop cropa    -0.122  0.042  
animal contherba    0.005  0.041 

phosphorus phosphorusa   -0.025  0.019  
phosphorus labora   0.009  0.017 

capital capitala    -0.032  0.101  
phosphorus fertilizersa   -0.008  0.014 

labor labora    -0.130  0.015  
phosphorus herbicidesa   -0.001  0.003 

fertilizers fertilizersa    0.014  0.008  
capital labora    -0.069  0.028 

herbicide herbicidea    0.116  0.011  
capital fertilizersa    0.060  0.024 

labor fertilizersa    0.116  0.011  
capital herbicidesa    0.009  0.006 

labor herbicidea    0.014  0.008       

 
Efficiency parameters 

educationd   -0.041  0.105  
used   0.092  0.163 

sized   -  -  
genderd   0.001  0.144 

aged   0.135  0.090  
resfarmd   0.066  0.134 

telecomd   0.069  0.126       

 u v u


 g s s s

12 2 2  
 0.831  0.175  

vs   0.379  0.243 

 
Mean log-likelihood 

  
3.529 

  
Number of observation 

  
89 
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Table A2. Estimated coefficients of the IDF of farms that have adopted crop rotation 

Parameters  Estimate  Standard 
Error 

 Parameters  Estimate  Standard 
Errors 

a 0   0.890  0.194  
herbicides fertilizersa    -0.174  0.018 

ripbufa   -0.021  0.046  
crop labora    0.127  0.015 

herbconta   -0.072  0.844  
crop fertilizersa    -0.101  0.009 

bioproda   0.567  0.145  
crop herbicidesa    -0.027  0.005 

envcluba   0.002  0.045  
animal labora    0.002  0.009 

liqmana   -0.119  0.137  
animal fertilizersa    -0.002  0.008 

croprota   -  -  
animal herbicidesa    <0.001  0.003 

phosphorusa   0.037  0.037  
crop phosphorusa   0.007  0.013 

cropa   -0.882  0.072  
animal phosphorusa   -0.013  0.007 

animala   -0.171  0.057  
crop capitala    0.011  0.027 

fertilizersa   0.383  0.049  
animal capitala    -0.004  0.018 

herbicidesa   0.197  0.017  
crop croprota    -  - 

labora   0.420  0.062  
animal croprota    -  - 

capitala   0.011  0.092  
crop liqmana    0.027  0.031 

animal animala    -0.006  0.012  
animal liqmana    -0.024  0.028 

animal cropa    0.088  0.025  
crop contherba    -0.026  0.845 

crop cropa    -0.087  0.021  
animal contherba    0.015  0.030 

phosphorus phosphorusa   -0.010  0.008  
phosphorus labora   -0.005  0.011 

capital capitala    -0.014  0.047  
phosphorus fertilizersa   0.005  0.009 

labor labora    -0.174  0.018  
phosphorus herbicidesa   <0.001  0.003 

fertilizers fertilizersa    0.028  0.012  
capital labora    -0.001  0.021 

herbicide herbicidea    0.146  0.013  
capital fertilizersa    0.001  0.017 

labor fertilizersa    0.146  0.013  
capital herbicidesa    <0.001  0.006 

labor herbicidea    0.028  0.012       

 
Efficiency parameters 

educationd   -0.103  0.046  
used   -0.067  0.101 

sized   -0.305  0.031  
genderd   0.053  0.110 

aged   0.001  0.052  
resfarmd   -0.032  0.067 

telecomd   -0.023  0.068       

 u v u


 g s s s

12 2 2  
 0.530  0.161  

vs   0.491  0.036 

 
Mean log-likelihood 

  
3.075 

  
Number of observations 

  
147 
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Table A3. Estimated coefficients of the IDF of farms that have adopted herbicides control 

Parameters  Estimate  Standard 
Error 

 Parameters  Estimate  Standard 
Errors 

a 0   3.101  0.565  
herbicides fertilizersa    -0.183  0.027 

ripbufa   -0.053  0.081  
crop labora    0.164  0.017 

herbconta   -  -  
crop fertilizersa    -0.127  0.013 

bioproda   0.381  0.142  
crop herbicidesa    -0.037  0.008 

envcluba   -0.059  0.092  
animal labora    -0.002  0.013 

liqmana   -0.507  0.199  
animal fertilizersa    0.001  0.010 

croprota   -0.139  0.223  
animal herbicidesa    0.001  0.004 

phosphorusa   -0.408  0.127  
crop phosphorusa   0.073  0.032 

cropa   -1.405  0.147  
animal phosphorusa   0.019  0.017 

animala   -0.148  0.088  
crop capitala    0.248  0.053 

fertilizersa   0.207  0.057  
animal capitala    0.020  0.034 

herbicidesa   0.164  0.024  
crop croprota    0.103  0.069 

labora   0.629  0.073  
animal croprota    -0.082  0.075 

capitala   0.145  0.146  
crop liqmana    0.169  0.051 

animal animala    0.065  0.031  
animal liqmana    -0.034  0.045 

animal cropa    -0.008  0.039  
crop contherba    -  - 

crop cropa    -0.157  0.035  
animal contherba    -  - 

phosphorus phosphorusa   0.006  0.024  
phosphorus labora   0.014  0.018 

capital capitala    -0.356  0.097  
phosphorus fertilizersa   -0.008  0.014 

labor labora    -0.183  0.026  
phosphorus herbicidesa   -0.005  0.005 

fertilizers fertilizersa    0.033  0.017  
capital labora    -0.106  0.029 

herbicide herbicidea    0.150  0.018  
capital fertilizersa    0.085  0.022 

labor fertilizersa    0.150  0.018  
capital herbicidesa    0.022  0.009 

labor herbicidea    0.033  0.017       

 
Efficiency parameters 

educationd   -0.012  0.077  
used   0.309  0.145 

sized   -  -  
genderd   -  - 

aged   0.109  0.097  
resfarmd   -0.116  0.106 

telecomd   -  -       

 u v u


 g s s s

12 2 2  
 0.134    

vs   0.521  0.022 

 
Mean log-likelihood 

  
2.995 

  
Number of observations 

  
80 
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Table 4A. Statistics of the Chow test 

Parameters   51,108F   Prob.>F 

Herbicide control  2.571  <0.001 

Manure injection  4.528  0.000 

Rotation cycle implementation  1.219  0.194 

 


