Canada's Compositional Cheese Standards and "Use-it or Lose-it" Import Licenses

MH.Felt¹ B. Larue² JP. Gervais³

¹Carleton University Ottawa

²CREATE Université Laval Québec

> ³CREATE Québec

SPAA Annual Workshop, 2011

The New Cheese Compositional Standards Motivations and Reactions

The New Cheese Compositional Standards

- CFIA amended the Dairy Products Regulations (DPR) and the Food and Drug Regulations (FDR)
- Revised regulation came into force on December 14, 2008
 - Minimum casein content derived from fluid milk
 - New import licensing system

Types of cheese	Casein from milk used in the industry	Minimum ratio fixed by new regulation
Pizza Mozzarella	60%	63%
Cheddar-type cheeses and Mozzarella	70%	83% 100% for Aged Cheddar
Specific speciality cheeses	80%	95%

The New Cheese Compositional Standards Motivations and Reactions

Motivations and Reactions

- Official motivations
 - Harmonizing existing federal regulations
 - Enhancing consumer interests
- Division within the Canadian dairy industry
 - Dairy producers (and Agropur)
 - Kraft, Parmalat and Saputo: the KPS coalition
- Criticisms from several trade partners: NZ, US, Australia, EU and Switzerland
 - Market access impact
 - Cost burden
 - Overly restrictive
 - Non-compliance with TBT Agreement and international standards (Codex Alimentarius)

Domestic production Imports

The Canadian cheese production

- Supply-management system for milk production
- The Canadian cheese industry: the 4 "big cheeses"

Domestic production by cheese type

Imports of milk protein ingredients

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

HS350400

HS 040490

- Increasing use of milk protein products
 - Increasing imports of MPC/MPI
 - Cumulative protective measures

Domestic production Imports

Canadian cheese imports

- Tariff-rate quota (TRQ)
 - Annual import "quota" of 20,412 metric tons
 - EU reserve (2/3)
- Import permits (and import licenses)
 - Allocated on a historical basis
 - Not cheese-specific
 - "Use-it-or-lose-it" clause
- Canada's main cheese suppliers by category

HS 0406	HS 0406.10 Fresh 1%	HS 0406.20 Grated/Powdered 6%	HS 0406.30 Processed 6%	HS 0406.40 Blue-veined 6%	HS 0406.90 Other 81%
USA	USA	USA	Switzerland	Denmark	France
France	Italy	Italy	France	UK	USA
Italy	Denmark	Netherlands	USA	France	Italy

Modelling the cheese production process Modelling the cheese market Comparative statics

Cheese production: Costs and constraints

- Leontief technology: $q_i \equiv min(\alpha_i m, \beta_i x)$
- ► Cost function: $C_i = q_i \left(\frac{w_m}{\alpha_i} + \frac{w_x}{\beta_i} \right)$
- Unit cost function: $c_i = \frac{w_m}{\alpha_i} + \frac{w_x}{\beta_i}$
- Increase in c_i from a binding standard s_i : $\Delta c_i = \left(s_i \frac{1}{\alpha_i}\right) w_m$

Modelling the cheese production process Modelling the cheese market Comparative statics

Cheese market: Products and Firms

- 2 types of cheese, produced domestically and/or imported
- ► A representative consumer with quasi-linear preferences: $U = Z + A_1 X_1 + A_2 X_2 - 0.5 (X_1^2 + X_2^2) - \gamma X_1 X_2$
- ► Inverse demands for 2 types of cheese: $p_1 = A_1 - \sum_{j=1}^{m_1} q_{1j}^A - \sum_{j=1}^n q_{1j}^B - \gamma \sum_{j=1}^{m_2} q_{2j}^A - \gamma \sum_{j=1}^n q_{2j}^B$ $p_2 = A_2 - \sum_{j=1}^{m_2} q_{2j}^A - \sum_{j=1}^n q_{2j}^B - \gamma \sum_{j=1}^{m_1} q_{1j}^A - \gamma \sum_{j=1}^n q_{1j}^B$
- ► m_1 domestic firms producing type 1 cheese at unit cost c_1 : $\pi_{1i}^A = \left(A_1 - \sum_{j=1}^{m_1} q_{1j}^A - \sum_{j=1}^n q_{1j}^B - \gamma \sum_{j=1}^{m_2} q_{2j}^A - \gamma \sum_{j=1}^n q_{2j}^B - c_1\right) q_{1i}^A$
- m_2 domestic firms producing type 2 cheese at unit cost c_2 : $\pi_{2i}^A = \left(A_2 - \sum_{j=1}^{m_2} q_{2j}^A - \sum_{j=1}^n q_{2j}^B - \gamma \sum_{j=1}^{m_1} q_{1j}^A - \gamma \sum_{j=1}^n q_{1j}^B - c_2\right) q_{2i}^A$

Modelling the cheese production process Modelling the cheese market Comparative statics

Cheese market: Products and Firms

n importers potentially purchasing both types of cheese at prices r₁ and r₂:

$$\begin{aligned} \pi_i^{\mathcal{B}} &= \left(\mathbf{A}_1 - \sum_{j=1}^{m_1} \mathbf{q}_{1j}^{\mathcal{A}} - \sum_{j=1}^{n} \mathbf{q}_{1j}^{\mathcal{B}} - \gamma \sum_{j=1}^{m_2} \mathbf{q}_{2j}^{\mathcal{A}} - \gamma \sum_{j=1}^{n} \mathbf{q}_{2j}^{\mathcal{B}} - \mathbf{r}_1 \right) \mathbf{q}_{1i}^{\mathcal{B}} \\ &+ \left(\mathbf{A}_2 - \sum_{j=1}^{m_2} \mathbf{q}_{2j}^{\mathcal{A}} - \sum_{j=1}^{n} \mathbf{q}_{2j}^{\mathcal{B}} - \gamma \sum_{j=1}^{m_1} \mathbf{q}_{1j}^{\mathcal{A}} - \gamma \sum_{j=1}^{n} \mathbf{q}_{1j}^{\mathcal{B}} - \mathbf{r}_2 \right) \mathbf{q}_{2i}^{\mathcal{B}} \end{aligned}$$

- "Use-it or lose-it clause" : $q_{2i}^B = \overline{Q_i} q_{1i}^B$
- Reaction functions:

 $j_1^A(q_1^A, q_1^B, q_2^A) = 0, \quad j_2^A(q_1^A, q_1^B, q_2^A) = 0, \quad j^B(q_1^A, q_1^B, q_2^A) = 0$

Firms have Cournot conjectures

Modelling the cheese production process Modelling the cheese market Comparative statics

Comparative statics: Effects of cost increases induced by a compositional standard

r ₁ ×				
Consumption of type 1	\searrow	Consumption of type 2	7	
Total domestic cheese production	$if m_1 \leq m_2$	Total cheese consumption	\searrow if $m_1 \leq m_2$	
Domestic demand for milk	$ \begin{array}{c} \searrow \\ \nearrow \end{array} \text{if} \frac{m_1 + B}{m_2 + B} \leq \frac{\alpha}{\alpha_2} \end{aligned} $	Value of trade	\nearrow if $r_1 \leq r_2$	
$\Delta q_1^B <$	< 0	$\Rightarrow \qquad \Delta q_2^B > 0$)	
\Downarrow		\Downarrow		
$\Delta q_1^{\mathcal{A}}$ >	> 0	$\Delta q_2^{\mathcal{A}} < 0$)	
$\Delta(m_1q_1^A+r$	$nq_1^B) < 0$	$\Delta(m_2q_2^A+nq_2^A)$	$(B_2) > 0$	
Felt,	Larue and Gervais	Canada's Compositional Che	eese Standards	

Modelling the cheese production process Modelling the cheese market Comparative statics

Comparative statics: Effects of cost increases induced by a compositional standard

r ₁ /					
Consumption of type 1	\searrow		Consumption of type 2	~	
Total domestic cheese production	\searrow	if $m_1 \leq m_2$	Total cheese consumption	XX	if $m_1 \leq m_2$
Domestic demand for milk	\searrow	if $\frac{m_1+B}{m_2+B} \leq \frac{\alpha_1}{\alpha_2}$	Value of trade	∧ ∧ or ∖	if $r_1 \leq r_2$

Modelling the cheese production process Modelling the cheese market Comparative statics

Comparative statics: Effects of cost increases induced by a compositional standard

r ₁ / ⁷					
Consumption of type 1	\searrow		Consumption of type 2	~	
Total domestic cheese production	∖ Z	if $m_1 \leq m_2$	Total cheese consumption	\ ~	if $m_1 \leq m_2$
Domestic demand for milk	Ž	if $\frac{m_1+B}{m_2+B} \leq \frac{\alpha_1}{\alpha_2}$	Value of trade	7 ∧ or ∖	if $r_1 \leq r_2$

$$\begin{array}{lll} \Delta q_1^B < 0 & \Rightarrow & \Delta q_2^B > 0 \\ & & & \downarrow \\ \Delta q_1^A > 0 & & \Delta q_2^A < 0 \end{array} \begin{vmatrix} \Delta (\frac{m_1}{\alpha_1} q_1^A + \frac{m_2}{\alpha_2} q_2^A) < 0 \\ & & \text{if } m_1 < m_2, \text{ when } \alpha_1 = \alpha_2 \end{aligned}$$

Modelling the cheese production process Modelling the cheese market Comparative statics

Comparative statics: Effects of cost increases induced by a compositional standard

r ₁ / ³					
Consumption of type 1	\searrow		Consumption of type 2	7	
Total domestic cheese production	\searrow	if $m_1 \leq m_2$	Total cheese consumption	××	if $m_1 \leq m_2$
Domestic demand for milk	\searrow	if $\frac{m_1+B}{m_2+B} \leq \frac{\alpha_1}{\alpha_2}$	Value of trade	≯ ≯ or ∖	if $r_1 \leq r_2$

$$\begin{array}{lll} \Delta q_1^B < 0 & \Rightarrow & \Delta q_2^B > 0 \\ \downarrow & & \downarrow \\ \Delta q_1^A > 0 & \Delta q_2^A < 0 \end{array} \right| \begin{array}{l} \Delta (nq_1^B r_1 + nq_2^B r_2) < 0 \\ \text{if } r_1 >> r_2 \\ \downarrow & \downarrow \end{array}$$

Modelling the cheese production process Modelling the cheese market Comparative statics

Comparative statics: Effects of cost increases induced by a compositional standard

C1 /				
Consumption of type 1	\searrow	Consumption of type 2	\nearrow or \searrow	
Total domestic cheese production	\searrow	Total cheese consumption	\searrow	
Domestic demand for milk	\nearrow or \searrow	Value of trade	\mathbf{z}	if $r_1 \geq r_2$

Method Results

Testing for structural breaks: Method

- Andrews(2003) test:
 - Variant of the Chow test
 - Detects end-of-sample structural change
- Bai and Perron(1998, 2003) test:
 - Endogenously determines number and dates of breaks

•
$$Y_t = \begin{cases} X_t \beta_1 + u_t & t = 1, ..., n \\ X_t \beta_2 + u_t & t = n+1, ..., n+m \end{cases}$$

- Timeline:
 - June 2007: notification to the WTO
 - December 2007: adoption by the Canadian parliament
 - September 2008: MPI is added to the Canadian ICL
 - December 2008: enforcement

Method Results

Testing for structural breaks: Results

Structural change in unit values of Canadian cheese imports by HS6 category from all sources

Cheese type	Bai and Perron test	Andrews test		
	(on full sample)	Estimation period	Results	
Fresh cheese	May 2010***	Jan 1997- <i>end</i> Jan 1997-May 2010	Jan-Jun 2010*** Jun,Sep,Oct 2007*	
Grated/Powdered cheese	stability	full sample	stability	
Processed cheese	Nov 2002**	Dec 2002- <i>end</i>	Feb 2009**, Jul-Sept 2008*	
Blue-veined cheese	stability	full sample	stability	
Other cheese	stability	full sample	stability	

Method Results

Testing for structural breaks: Results

Structural change in unit values of Canadian cheese imports by main suppliers and HS6 category

Cheese type	Origin	Bai and Perron test	Andre	ews test
	- · · g· · ·	(on full sample)	Estimation period	Results
	Italy	Dec 2001**	Jan 2002- <i>end</i>	Mar 2010**
Fresh cheese	US	May 2010***	Jan 1997- <i>end</i> Jan 1997-May 2010	Nov 2009-Jun 2010** Jun,Oct 2007***
Grated/Powdered cheese	US	stability	full sample	stability
	France	stability	full sample	stability
Processed cheese	Switzerland	Sept 2002***	Oct 2002-end	Oct,Nov 2010*
	US	stability	full sample	Feb 2009*
Blue-veined cheese	Denmark	stability	full sample	Mar-May 2008*
	France	stability	full sample	stability
	France	stability	full sample	stability
Other cheese	Italy	stability	full sample	Feb-Apr 2011**
	Switzerland	stability	full sample	stability
	US	Mar 2005**	Apr 2005- <i>end</i>	May 2009**

Conclusion

- Varying standards effects according to:
 - cheese type
 - manufacturer and country of origin
- Theoretical model:
 - important role of domestic market structure
 - "ratchet effect"
 - potential peculiar effects
- Empirical analysis:
 - mainly upward shifts in unit values: beneficial for EU
 - abrupt decrease in MPC unit values: detrimental for NZ